∫ cot³ 2x dx
let u=2x"\\implies" du=2dx
"\\therefore\u2234 \\int cot^32xdx= \\frac12 \\int cot^3udu...(i)"
let "\\Iota_ n= \\frac{ (-cotn-1x)} {( n-1)} -\\Iota _{n-2}"
"\\Iota _ {3}=\\frac {(- cot 2u)} 2 - \\Iota _1"
"= \\frac {(- cot2 u)} 2- \\int cot udu"
"= \\frac {(- cot2u)} 2 - \\Iota_n sin u+ c...(ii)"
(ii)and (i) gives
"\\therefore\u2234 \\int cot^3 2xdx= \\frac {(-cot ^32x)}4 - \\frac 12 \\iota _nsin 2x + c"
Comments
Leave a comment