Question #175020

∫ cot³ 2x dx


1
Expert's answer
2021-04-15T07:53:01-0400

let u=2x    \implies du=2dx

cot32xdx=12cot3udu...(i)\therefore∴ \int cot^32xdx= \frac12 \int cot^3udu...(i)

let In=(cotn1x)(n1)In2\Iota_ n= \frac{ (-cotn-1x)} {( n-1)} -\Iota _{n-2}

I3=(cot2u)2I1\Iota _ {3}=\frac {(- cot 2u)} 2 - \Iota _1

=(cot2u)2cotudu= \frac {(- cot2 u)} 2- \int cot udu

=(cot2u)2Insinu+c...(ii)= \frac {(- cot2u)} 2 - \Iota_n sin u+ c...(ii)

(ii)and (i) gives

cot32xdx=(cot32x)412ιnsin2x+c\therefore∴ \int cot^3 2xdx= \frac {(-cot ^32x)}4 - \frac 12 \iota _nsin 2x + c




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS