∫ cot³ 2x dx
let u=2x ⟹ \implies⟹ du=2dx
∴∴∫cot32xdx=12∫cot3udu...(i)\therefore∴ \int cot^32xdx= \frac12 \int cot^3udu...(i)∴∴∫cot32xdx=21∫cot3udu...(i)
let In=(−cotn−1x)(n−1)−In−2\Iota_ n= \frac{ (-cotn-1x)} {( n-1)} -\Iota _{n-2}In=(n−1)(−cotn−1x)−In−2
I3=(−cot2u)2−I1\Iota _ {3}=\frac {(- cot 2u)} 2 - \Iota _1I3=2(−cot2u)−I1
=(−cot2u)2−∫cotudu= \frac {(- cot2 u)} 2- \int cot udu=2(−cot2u)−∫cotudu
=(−cot2u)2−Insinu+c...(ii)= \frac {(- cot2u)} 2 - \Iota_n sin u+ c...(ii)=2(−cot2u)−Insinu+c...(ii)
(ii)and (i) gives
∴∴∫cot32xdx=(−cot32x)4−12ιnsin2x+c\therefore∴ \int cot^3 2xdx= \frac {(-cot ^32x)}4 - \frac 12 \iota _nsin 2x + c∴∴∫cot32xdx=4(−cot32x)−21ιnsin2x+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments