solve ∫(secθ−tanθ)2dθ
=∫(sec2−2secθtanθ+tan2θ)dθ
=∫(1+tan2θ−(2secθtanθ+tan2θ)dθ
=∫(1−2secθtanθ+2tan2θ)dθ
=∫dθ−2∫(2secθtanθdθ)+2∫(tan2θdθ)
=θ−2∫secθtanθdθ+∫tan2θdθ
for
∫secθtanθdθ,letu=secθ,du=secθtanθdθ
؞∫secθtanθdθ=∫du=u=secθ…(ii)
and for
∫tan2θdθ we define ǀn=∫tan2θdθ=n−1tan−1θ−ǀn−2
as the reduction formula
Thus
ǀ2=∫tan2θdθ=1tanθ−ǀ0
=tanθ−θ…(iii)
Replacing (ii) and (iii) in (i)gives,
=∫(secθ−tanθ)2dθ
=θ−2secθ+2(tanθ−θ)+c
=2tanθ−2secθ−θ+c
Comments