Question #175022

∫ (sec θ - tan θ)² dθ


1
Expert's answer
2021-04-15T17:21:55-0400

solve (secθtanθ)2dθ∫ (sec θ - tan θ)² dθ

=(sec22secθtanθ+tan2θ)dθ=∫(sec^2-2 secθtanθ+tan^2 θ)dθ

=(1+tan2θ(2secθtanθ+tan2θ)dθ=∫(1+tan^2 θ-(2sec θtanθ+tan^2 θ)dθ

=(12secθtanθ+2tan2θ)dθ=∫(1-2secθtanθ+2tan^2 θ)dθ

=dθ2(2secθtanθdθ)+2(tan2θdθ)=∫dθ-2∫(2secθtanθdθ)+2∫(tan^2 θdθ)

=θ2secθtanθdθ+tan2θdθ=θ-2∫secθtanθdθ+∫tan^2 θdθ

for

secθtanθdθ,letu=secθ,du=secθtanθdθ∫secθtanθdθ, let u=secθ , du=secθtanθdθ

؞secθtanθdθ=du=u=secθ(ii)؞ ∫secθtanθdθ=∫du=u =secθ …(ii)

and for

tan2θdθ\int tan ^2 \theta d\theta we define ǀn=tan2θdθ=tan1θn1ǀn2ǀn =∫tan^2 θdθ=\frac {tan^{-1} θ}{n-1}-ǀ_{n-2}

as the reduction formula

Thus

ǀ2=tan2θdθ=tanθ1ǀ0ǀ_2=∫tan^2 θdθ= \frac {tanθ}{1} -ǀ_0

=tanθθ(iii)=tanθ-θ…(iii)

Replacing (ii) and (iii) in (i)gives,

=(secθtanθ)2dθ=∫(secθ-tanθ)^2 dθ

=θ2secθ+2(tanθθ)+c=θ-2 sec θ+2(tanθ-θ)+c

=2tanθ2secθθ+c=2tanθ-2secθ-θ+c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS