∫ (sec θ - tan θ)² dθ
solve "\u222b (sec \u03b8 - tan \u03b8)\u00b2 d\u03b8"
"=\u222b(sec^2-2 sec\u03b8tan\u03b8+tan^2 \u03b8)d\u03b8"
"=\u222b(1+tan^2 \u03b8-(2sec \u03b8tan\u03b8+tan^2 \u03b8)d\u03b8"
"=\u222b(1-2sec\u03b8tan\u03b8+2tan^2 \u03b8)d\u03b8"
"=\u222bd\u03b8-2\u222b(2sec\u03b8tan\u03b8d\u03b8)+2\u222b(tan^2 \u03b8d\u03b8)"
"=\u03b8-2\u222bsec\u03b8tan\u03b8d\u03b8+\u222btan^2 \u03b8d\u03b8"
for
"\u222bsec\u03b8tan\u03b8d\u03b8, let u=sec\u03b8 , du=sec\u03b8tan\u03b8d\u03b8"
"\u061e \u222bsec\u03b8tan\u03b8d\u03b8=\u222bdu=u\n =sec\u03b8\t\u2026(ii)"
and for
"\\int tan ^2 \\theta d\\theta" we define "\u01c0n =\u222btan^2 \u03b8d\u03b8=\\frac {tan^{-1} \u03b8}{n-1}-\u01c0_{n-2}"
as the reduction formula
Thus
"\u01c0_2=\u222btan^2 \u03b8d\u03b8= \\frac {tan\u03b8}{1} -\u01c0_0"
"=tan\u03b8-\u03b8\u2026(iii)"
Replacing (ii) and (iii) in (i)gives,
"=\u222b(sec\u03b8-tan\u03b8)^2 d\u03b8"
"=\u03b8-2 sec \u03b8+2(tan\u03b8-\u03b8)+c"
"=2tan\u03b8-2sec\u03b8-\u03b8+c"
Comments
Leave a comment