Evaluate the integral of (tan^-1 x)/(1+x² )dx from 0 to1
Evaluate the integral of (tan^-1 x)/(1+x² )dx from 0 to1
Let "u=tan^{-1}x"
Then "{du \\over dx}={1 \\over 1+x^2}"
"dx=(1+x\u00b2)du"
"\\int_0 {u \\over 1+x\u00b2}.(1+x\u00b2)du"
="{u\u00b2 \\over 2}= {(tan^{-1}x)^2 \\over 2}" From 0 to 1
"{(tan^{-1}1)\u00b2 \\over 2}-{(tan^{-1}0)\u00b2 \\over 2}"
"{(tan^{-1}1)\u00b2 \\over 2}"
Comments
Leave a comment