Evaluate the integral of (√siny) cos y dy from 3 to π/2
Solution.
"\\int\\limits_3^{\\frac{\\pi} {2}}\\sqrt{sin{y}}\\cos{y}dy."Make a replacement:
"t=\\sqrt{\\sin{y}}, t\\geq0," from here "\\sin{y}=t^2."
Then "\\cos{y}dy=2tdt."
We will have
"\\int\\limits_3^{\\frac{\\pi}{2}}t\\cdot 2tdt=\\int\\limits_3^{\\frac{\\pi}{2}}2t^2dt=\\frac{2t^3}{3}|_3^{\\frac{\\pi}{2}}=\\newline\n=\\frac{2\\sin^{\\frac{3}{2}}y}{3}|_3^{\\frac{\\pi}{2}}=\n\\frac{2\\sin^{\\frac{3}{2}}\\frac{\\pi}{2}}{3}-\\frac{2\\sin^{\\frac{3}{2}}3}{3}=\\newline =\\frac{2}{3}-\\frac{2\\sin^{\\frac{3}{2}}3}{3}\n\\approx 0.63."
Answer.
"\\int\\limits_3^{\\frac{\\pi} {2}}\\sqrt{sin{y}}\\cos{y}dy\\approx 0.63."
Comments
Leave a comment