Solution.
∫ 3 π 2 s i n y cos y d y . \int\limits_3^{\frac{\pi} {2}}\sqrt{sin{y}}\cos{y}dy. 3 ∫ 2 π s in y cos y d y .
Make a replacement:
t = sin y , t ≥ 0 , t=\sqrt{\sin{y}}, t\geq0, t = sin y , t ≥ 0 , from here sin y = t 2 . \sin{y}=t^2. sin y = t 2 .
Then cos y d y = 2 t d t . \cos{y}dy=2tdt. cos y d y = 2 t d t .
We will have
∫ 3 π 2 t ⋅ 2 t d t = ∫ 3 π 2 2 t 2 d t = 2 t 3 3 ∣ 3 π 2 = = 2 sin 3 2 y 3 ∣ 3 π 2 = 2 sin 3 2 π 2 3 − 2 sin 3 2 3 3 = = 2 3 − 2 sin 3 2 3 3 ≈ 0.63. \int\limits_3^{\frac{\pi}{2}}t\cdot 2tdt=\int\limits_3^{\frac{\pi}{2}}2t^2dt=\frac{2t^3}{3}|_3^{\frac{\pi}{2}}=\newline
=\frac{2\sin^{\frac{3}{2}}y}{3}|_3^{\frac{\pi}{2}}=
\frac{2\sin^{\frac{3}{2}}\frac{\pi}{2}}{3}-\frac{2\sin^{\frac{3}{2}}3}{3}=\newline =\frac{2}{3}-\frac{2\sin^{\frac{3}{2}}3}{3}
\approx 0.63. 3 ∫ 2 π t ⋅ 2 t d t = 3 ∫ 2 π 2 t 2 d t = 3 2 t 3 ∣ 3 2 π = = 3 2 s i n 2 3 y ∣ 3 2 π = 3 2 s i n 2 3 2 π − 3 2 s i n 2 3 3 = = 3 2 − 3 2 s i n 2 3 3 ≈ 0.63.
Answer.
∫ 3 π 2 s i n y cos y d y ≈ 0.63. \int\limits_3^{\frac{\pi} {2}}\sqrt{sin{y}}\cos{y}dy\approx 0.63. 3 ∫ 2 π s in y cos y d y ≈ 0.63.
Comments