Question #162035

Evaluate the integral of (√siny) cos y dy from 3 to π/2


1
Expert's answer
2021-02-16T12:31:13-0500

Solution.

3π2sinycosydy.\int\limits_3^{\frac{\pi} {2}}\sqrt{sin{y}}\cos{y}dy.


Make a replacement:

t=siny,t0,t=\sqrt{\sin{y}}, t\geq0, from here siny=t2.\sin{y}=t^2.

Then cosydy=2tdt.\cos{y}dy=2tdt.

We will have

3π2t2tdt=3π22t2dt=2t333π2==2sin32y33π2=2sin32π232sin3233==232sin32330.63.\int\limits_3^{\frac{\pi}{2}}t\cdot 2tdt=\int\limits_3^{\frac{\pi}{2}}2t^2dt=\frac{2t^3}{3}|_3^{\frac{\pi}{2}}=\newline =\frac{2\sin^{\frac{3}{2}}y}{3}|_3^{\frac{\pi}{2}}= \frac{2\sin^{\frac{3}{2}}\frac{\pi}{2}}{3}-\frac{2\sin^{\frac{3}{2}}3}{3}=\newline =\frac{2}{3}-\frac{2\sin^{\frac{3}{2}}3}{3} \approx 0.63.

Answer.

3π2sinycosydy0.63.\int\limits_3^{\frac{\pi} {2}}\sqrt{sin{y}}\cos{y}dy\approx 0.63.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS