Question #162031

Evaluate the the integral of (2x+1)^7 dx from-½ to ½


1
Expert's answer
2021-02-23T13:01:25-0500

1212(2x+1)7dx=1212122(2x+1)7dx=121212(2x+1)7d(2x+1)=(2x+1)8161212==(1+1)8(1+1)816=16\begin{array}{l} \int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {{{\left( {2x + 1} \right)}^7}} dx = \frac{1}{2}\int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {2{{\left( {2x + 1} \right)}^7}} dx = \frac{1}{2}\int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {{{\left( {2x + 1} \right)}^7}} d(2x + 1) = \left. {\frac{{{{\left( {2x + 1} \right)}^8}}}{{16}}} \right|_{ - \frac{1}{2}}^{\frac{1}{2}} = \\ = \frac{{{{\left( {1 + 1} \right)}^8} - {{( - 1 + 1)}^8}}}{{16}} = 16 \end{array}

Answer: 16


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS