Evaluate the the integral of (2x+1)^7 dx from-½ to ½
∫−1212(2x+1)7dx=12∫−12122(2x+1)7dx=12∫−1212(2x+1)7d(2x+1)=(2x+1)816∣−1212==(1+1)8−(−1+1)816=16\begin{array}{l} \int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {{{\left( {2x + 1} \right)}^7}} dx = \frac{1}{2}\int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {2{{\left( {2x + 1} \right)}^7}} dx = \frac{1}{2}\int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {{{\left( {2x + 1} \right)}^7}} d(2x + 1) = \left. {\frac{{{{\left( {2x + 1} \right)}^8}}}{{16}}} \right|_{ - \frac{1}{2}}^{\frac{1}{2}} = \\ = \frac{{{{\left( {1 + 1} \right)}^8} - {{( - 1 + 1)}^8}}}{{16}} = 16 \end{array}−21∫21(2x+1)7dx=21−21∫212(2x+1)7dx=21−21∫21(2x+1)7d(2x+1)=16(2x+1)8∣∣−2121==16(1+1)8−(−1+1)8=16
Answer: 16
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments