Evaluate the ∫(t³+3t/t²+1)dt
Apply the Sum Rule:∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dxApplytheSumRule:∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫t3dt=t44\int t^3dt=\dfrac{t^4}{4}∫t3dt=4t4
∫3tt2dt=3ln∣t∣\int \dfrac{3t}{t^2}dt=3ln|t|∫t23tdt=3ln∣t∣
∫1dt=t\int 1dt=t∫1dt=t
∫ t3dt+∫3tt2dt+∫ 1dt=t44+3ln∣t∣+t+C\int \:t^3dt+\int \frac{3t}{t^2}dt+\int \:1dt=\dfrac{t^4}{4}+3ln|t|+t+C∫t3dt+∫t23tdt+∫1dt=4t4+3ln∣t∣+t+C
t44+3ln∣t∣+t+C\dfrac{t^4}{4}+3ln|t|+t+C4t4+3ln∣t∣+t+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments