Question #162025

Evaluate the ∫2sec² β bβ/tanβ


1
Expert's answer
2021-02-24T12:29:40-0500

Evaluate the 2sec2βdβtanβ\int \frac{2\sec^2{\beta}d\beta}{\tan{\beta}} .

Solution:

2sec2βdβtanβ=2dβtanβcos2β=2dtanβtanβ=\int \frac{2\sec^2{\beta}d\beta}{\tan{\beta}}=\int \frac{2d\beta}{\tan{\beta}\cos^2{\beta}}=\int \frac{2d\tan{\beta}}{\tan{\beta}}=

2lntanβ+C=ln(tan2β)+C2\ln{|\tan{\beta}|}+C=\ln{(\tan^2{\beta})}+C

Answer:2sec2βdβtanβ=ln(tan2β)+C\int \frac{2\sec^2{\beta}d\beta}{\tan{\beta}}=\ln{(\tan^2{\beta})}+C .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS