Evaluate the ∫e^t dt/cuberoot (1-e^t)
Solution
Substitution x = et :
"\\int \\frac{e^t dt}{\\sqrt[3]{1-e^t}}=\\int\\frac{dx}{\\sqrt[3]{1-x}}=\\int(1-x)^{-1\/3}dx=\n-\\frac{3}{2}(1-x)^{2\/3}+C=-\\frac{3}{2}(1-e^t)^{2\/3}+C"
Answer
"\\int \\frac{e^t dt}{\\sqrt[3]{1-e^t}}=-\\frac{3}{2}(1-e^t)^{2\/3}+C"
Comments
Leave a comment