Question #162002

Find arc length of curve (sketch also) x=y^4 /8 + 1/4 y^2 , y=1 to y = 4


1
Expert's answer
2021-02-23T09:18:06-0500

Find arc length of curve (sketch also) x=y48+14y2x=\frac{y^4}{8} + \frac{1}{4y^2} , y=1y=1 to y=4y = 4 .

Arc length of curve:

L=141+(dxdy)2dy=141+(y3212y3)2dy=14(y32+12y3)2dy=14(y32+12y3)dy=L=\int_{1}^{4} \sqrt{1+(\frac{dx}{dy})^2}dy=\int_{1}^{4} \sqrt{1+(\frac{y^3}{2}-\frac{1}{2y^3})^2}dy=\int_{1}^{4} \sqrt{(\frac{y^3}{2}+\frac{1}{2y^3})^2}dy=\int_{1}^{4} (\frac{y^3}{2}+\frac{1}{2y^3})dy=

(y4814y2)14=25681416(1814)=32764(\frac{y^4}{8}-\frac{1}{4y^2})|_1^4=\frac{256}{8}-\frac{1}{4\cdot 16}-(\frac18-\frac14)=32\frac{7}{64}



Answer: L=32764.L=32\frac{7}{64}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS