Find arc length of curve (sketch also) x=y^4 /8 + 1/4 y^2 , y=1 to y = 4
Find arc length of curve (sketch also) x=y48+14y2x=\frac{y^4}{8} + \frac{1}{4y^2}x=8y4+4y21 , y=1y=1y=1 to y=4y = 4y=4 .
Arc length of curve:
L=∫141+(dxdy)2dy=∫141+(y32−12y3)2dy=∫14(y32+12y3)2dy=∫14(y32+12y3)dy=L=\int_{1}^{4} \sqrt{1+(\frac{dx}{dy})^2}dy=\int_{1}^{4} \sqrt{1+(\frac{y^3}{2}-\frac{1}{2y^3})^2}dy=\int_{1}^{4} \sqrt{(\frac{y^3}{2}+\frac{1}{2y^3})^2}dy=\int_{1}^{4} (\frac{y^3}{2}+\frac{1}{2y^3})dy=L=∫141+(dydx)2dy=∫141+(2y3−2y31)2dy=∫14(2y3+2y31)2dy=∫14(2y3+2y31)dy=
(y48−14y2)∣14=2568−14⋅16−(18−14)=32764(\frac{y^4}{8}-\frac{1}{4y^2})|_1^4=\frac{256}{8}-\frac{1}{4\cdot 16}-(\frac18-\frac14)=32\frac{7}{64}(8y4−4y21)∣14=8256−4⋅161−(81−41)=32647
Answer: L=32764.L=32\frac{7}{64}.L=32647.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments