Find arc length of curve (sketch also) x=y^4 /8 + 1/4 y^2 , y=1 to y = 4
Find arc length of curve (sketch also) "x=\\frac{y^4}{8} + \\frac{1}{4y^2}" , "y=1" to "y = 4" .
Arc length of curve:
"L=\\int_{1}^{4} \\sqrt{1+(\\frac{dx}{dy})^2}dy=\\int_{1}^{4} \\sqrt{1+(\\frac{y^3}{2}-\\frac{1}{2y^3})^2}dy=\\int_{1}^{4} \\sqrt{(\\frac{y^3}{2}+\\frac{1}{2y^3})^2}dy=\\int_{1}^{4} (\\frac{y^3}{2}+\\frac{1}{2y^3})dy="
"(\\frac{y^4}{8}-\\frac{1}{4y^2})|_1^4=\\frac{256}{8}-\\frac{1}{4\\cdot 16}-(\\frac18-\\frac14)=32\\frac{7}{64}"
Answer: "L=32\\frac{7}{64}."
Comments
Leave a comment