Show that ∞n=0 (x^n)/(n!)converges for all x ∈ R.
Using the ration test, the radius of convergence of the series "\\displaystyle \\sum_{n=0}^{+\\infty}\\frac{x^n}{n!}" is
"r=\\lim_{n\\rightarrow\\infty}\\left|\\frac{c_n}{c_{n+1}}\\right|=\\lim_{n\\rightarrow\\infty}\\left|\\frac{\\frac{1}{n!}}{\\frac{1}{(n+1)!}}\\right|=\\lim_{n\\rightarrow\\infty}n+1=+\\infty."That is, for all "x\\in\\mathbb{R}", the series is convergent.
Comments
Leave a comment