Prove that the series 1 + (1/2)·(1/3) + [(1·3)/(2· 4)]·(1/5) + [(1·3·5)/(2·4·6)]·(1/7) + ..... converges
We drop the first term i.e. 1. we consider the rest of the sequence Let us denote each term by "u_n." Then "u_1= \\frac{1}{2}\\cdot\\frac{1}{3}" . We note, "u_n= \\frac{1}{2}\\cdot\\frac{3}{4}\\cdots \\frac{2n-1}{2n}\\frac{1}{2n+1}." Hence "\\frac{u_{n}}{u_{n+1}}=\\frac{(2n+2)(2n+3)}{(2n+1)^2}."
Hence, "n(\\frac{u_{n}}{u_{n+1}}-1)= \\frac{6n^2+5n}{4n^2+4n+1}=\\frac{6+\\frac{5}{n}}{4+\\frac{4}{n}+\\frac{1}{n^2}}." Hence "lim_{n\\rightarrow \\infty} \\ n(\\frac{u_n}{u_{n+1}}-1)=\\frac{6}{4}=3\/2>1."
Hence by Rabbe's test the series converges.
Comments
Leave a comment