Question #161763

Prove that for any 0 < x < 1, the series (1−x)+(x²−x³)+... converges and show that it converges to 1/(1+x)


1
Expert's answer
2021-02-24T06:36:57-0500

Prove that for any 0 < x < 1, the series (1−x)+(x²−x³)+... converges and show that it converges to 1/(1+x)

Solution:

(1x)+(x2x3)+(x4x5)+...=n=0(1x)x2n\displaystyle(1−x)+(x^2−x^3)+(x^4−x^5)+...=\sum_{\mathclap{n=0}} ^{\mathclap{\infty}}(1-x)x^{2n}

n=0(1x)x2n=n=0(1x)(x2)n\displaystyle\sum_{\mathclap{n=0}} ^{\mathclap{\infty}}(1-x)x^{2n}=\displaystyle\sum_{\mathclap{n=0}} ^{\mathclap{\infty}}(1-x)({x^2})^n

n=0(1x)(x2)n\displaystyle\sum_{\mathclap{n=0}} ^{\mathclap{\infty}}(1-x)({x^2})^n is an infinite geometric series. It is an infinite series whose successive terms have a common ratio x2x^2 . Such a series converges if and only if the absolute value of the common ratio is less than one (x2<1|x^2| < 1 ).

Since:

0<x<10 < x < 1

then:

0<x2<10 < x^2 < 1 and the convergence condition is satisfied.

The sum of the series can be computed from the finite sum formula:

n=0(1x)(x2)n=limkn=0k(1x)(x2)n=\displaystyle\sum_{\mathclap{n=0}} ^{\mathclap{\infty}}(1-x)({x^2})^n=\lim_{\mathclap{k\to\infty}}\displaystyle\sum_{\mathclap{n=0}} ^{\mathclap{k}}(1-x)({x^2})^n=

limk(1x)(1(x2)k+1)1x2=1x1x2=\displaystyle\lim_{\mathclap{k\to\infty}}\frac{(1-x)(1-(x^2)^{k+1})}{1-x^{2}}=\frac{1-x}{1-x^2}=

1x(1x)(1+x)=11+x\displaystyle\frac{1-x}{(1-x)(1+x)}=\frac{1}{1+x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS