Find the differential in y=3√6x
Answer\bold {Answer}Answer
y′=362x=36x2xy^{'} = \dfrac {3\sqrt{6}}{2\sqrt{x}} = \dfrac {3\sqrt{6x}}{2x}y′=2x36=2x36x
Solution\bold {Solution }Solution
y=36xy = 3\sqrt{6x}y=36x
=36×x= 3\sqrt{6} × \sqrt{x}=36×x
y′=ddx(36x)y^{'} = \dfrac {d}{dx}(3\sqrt{6x})y′=dxd(36x)
=36ddx(x)= 3\sqrt{6}\dfrac {d}{dx}(\sqrt{x})=36dxd(x)
=36ddx(x12)= 3\sqrt{6}\dfrac {d}{dx}(x^{\small\dfrac {1}{2}})=36dxd(x21)
=12×36×x−12)= \dfrac {1}{2} × 3\sqrt{6} × x ^{\small-\dfrac{1}{2}})=21×36×x−21)
=362x= \dfrac {3\sqrt{6}}{2\sqrt{x}}=2x36 Or 36x2x\dfrac {3\sqrt {6x}}{2x}2x36x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments