Question #161474

Let R be bounded by the curves y = x2 + 2 and y = 2x + 5. What integrals will give the volume of the solid of revolution formed by revolving R around the line x = −3?


1
Expert's answer
2021-02-24T07:59:04-0500

Solution:

Given, curve C:y=x2+2,C:y=x^2+2, and line  L:y=2x+5\ L:y=2x+5

Around the line: x=3x=-3



Outer radius: x=y2+1x=\sqrt{y-2}+1

Inner radius: x=y52+1=y32x=\dfrac{y-5}2+1=\dfrac{y-3}2

From graph, we can see limits of y are 2 to 11.

So, a=2, b=11.

Now, area, A(y)=π[(y2+1)2(y32)2]A(y)=\pi[(\sqrt{y-2}+1)^2-(\dfrac{y-3}2)^2]

A(y)=π[(y2+1+2y2)(y2+96y4)]\Rightarrow A(y)=\pi[(y-2+1+2\sqrt{y-2})-(\dfrac{y^2+9-6y}4)]

A(y)=π[y1+2y2y2494+3y2]\Rightarrow A(y)=\pi[y-1+2\sqrt{y-2}-\dfrac{y^2}4 -\dfrac94+\dfrac{3y}2]

A(y)=π(2y2y24134+5y2)\Rightarrow A(y)=\pi(2\sqrt{y-2}-\dfrac{y^2}4 -\dfrac{13}4+\dfrac{5y}2)

Now, Volume, V=211[π(2y2y24134+5y2)]dyV=\int_{2}^{11}[\pi(2\sqrt{y-2}-\dfrac{y^2}4 -\dfrac{13}4+\dfrac{5y}2)]dy V=π[(4(y2)3/23y31213y4+5y24)]211\Rightarrow V=\pi[(\dfrac{4(y-2)^{3/2}}{3}-\dfrac{y^3}{12} -\dfrac{13y}4+\dfrac{5y^2}4)]_{2}^{11}

V=π[(4(112)3/231131213(11)4+5(11)24)(4(22)3/23231213(2)4+5(2)24)]\Rightarrow V=\pi[(\dfrac{4(11-2)^{3/2}}{3}-\dfrac{{11}^3}{12} -\dfrac{13(11)}4+\dfrac{5(11)^2}4)-(\dfrac{4(2-2)^{3/2}}{3}-\dfrac{2^3}{12} -\dfrac{13(2)}4+\dfrac{5(2)^2}4)]

V=π[(361331121434+6054(023132+5)]\Rightarrow V=\pi[(36-\dfrac{1331}{12} -\dfrac{143}4+\dfrac{605}4-(0-\dfrac{2}{3} -\dfrac{13}2+5)]

V=π[36133112+2312+23+1325]\Rightarrow V=\pi[36-\dfrac{1331}{12} +\dfrac{231}2+\dfrac{2}{3} +\dfrac{13}2-5]

V=π[36133112+2312+23+1325]\Rightarrow V=\pi[36-\dfrac{1331}{12} +\dfrac{231}2+\dfrac{2}{3} +\dfrac{13}2-5]

V=42.75π units3\Rightarrow V=42.75\pi\ \text{units}^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS