Let R be bounded by the curves y = x2 + 2 and y = 2x + 5. What integrals will give the volume of the solid of revolution formed by revolving R around the line x = −3?
Solution:
Given, curve "C:y=x^2+2," and line "\\ L:y=2x+5"
Around the line: "x=-3"
Outer radius: "x=\\sqrt{y-2}+1"
Inner radius: "x=\\dfrac{y-5}2+1=\\dfrac{y-3}2"
From graph, we can see limits of y are 2 to 11.
So, a=2, b=11.
Now, area, "A(y)=\\pi[(\\sqrt{y-2}+1)^2-(\\dfrac{y-3}2)^2]"
"\\Rightarrow A(y)=\\pi[(y-2+1+2\\sqrt{y-2})-(\\dfrac{y^2+9-6y}4)]"
"\\Rightarrow A(y)=\\pi[y-1+2\\sqrt{y-2}-\\dfrac{y^2}4 -\\dfrac94+\\dfrac{3y}2]"
"\\Rightarrow A(y)=\\pi(2\\sqrt{y-2}-\\dfrac{y^2}4 -\\dfrac{13}4+\\dfrac{5y}2)"
Now, Volume, "V=\\int_{2}^{11}[\\pi(2\\sqrt{y-2}-\\dfrac{y^2}4 -\\dfrac{13}4+\\dfrac{5y}2)]dy" "\\Rightarrow V=\\pi[(\\dfrac{4(y-2)^{3\/2}}{3}-\\dfrac{y^3}{12} -\\dfrac{13y}4+\\dfrac{5y^2}4)]_{2}^{11}"
"\\Rightarrow V=\\pi[(\\dfrac{4(11-2)^{3\/2}}{3}-\\dfrac{{11}^3}{12} -\\dfrac{13(11)}4+\\dfrac{5(11)^2}4)-(\\dfrac{4(2-2)^{3\/2}}{3}-\\dfrac{2^3}{12} -\\dfrac{13(2)}4+\\dfrac{5(2)^2}4)]"
"\\Rightarrow V=\\pi[(36-\\dfrac{1331}{12} -\\dfrac{143}4+\\dfrac{605}4-(0-\\dfrac{2}{3} -\\dfrac{13}2+5)]"
"\\Rightarrow V=\\pi[36-\\dfrac{1331}{12} +\\dfrac{231}2+\\dfrac{2}{3} +\\dfrac{13}2-5]"
"\\Rightarrow V=\\pi[36-\\dfrac{1331}{12} +\\dfrac{231}2+\\dfrac{2}{3} +\\dfrac{13}2-5]"
"\\Rightarrow V=42.75\\pi\\ \\text{units}^3"
Comments
Leave a comment