A particle moves along the x-axis so that at time t≥0 its position is given by x(t) = -t^3 + 14t^2 25t. Determine the velocity of the particle at t = 2.
"Given:\\;\\;Particle's\\;position\\;is\\;given\\;by \\to\\;\\;x(t)=-t^3+14t^2+25t"
"To\\;find:\\;Velocity\\;of\\;the\\;particle\\;at\\;t=2,\\;i.e.,\\;x'(2)"
"We\\;know\\;that\\;-\\;\\;v(t)=\\dfrac{d}{dt}(x(t))=\\dfrac{d}{dt}(-t^3+14t^2+25t)"
"=-\\dfrac{d}{dt}(t^3)+14\\dfrac{d}{dt}(t^2)+25\\dfrac{d}{dt}(t)"
"=-(3t^2)+14(2t)+25(1)"
"=-3t^2+28t+25"
"\\therefore x'(t)=-3t^2+28t+25\\;and\\;\\;x'(2)=-3(2^2)+28(2)+25=-12+81=\\mathbf{69}"
Comments
Leave a comment