Question #161314

Check the validity of Rolle’s Theorem for f(x)=1+(x2)(1/3)f(x)=1+(x-2)^(1/3) on the interval [2, 10].


1
Expert's answer
2021-02-09T08:47:15-0500

f(x)=1+(x2)13f(2)=1+(22)13=1+0=1f(10)=1+(102)13=1+2=3f(x)=13(x2)23f(x)=0    13(x2)23=0No solution existsTherefore the function does notsatisfy Rolle’s theorem becausef(2)f(10)andf(x)0for2x10\displaystyle f(x) = 1 + (x - 2)^{\frac{1}{3}}\\ f(2) = 1 + (2 - 2)^{\frac{1}{3}} = 1 + 0 = 1\\ f(10) = 1 + (10 - 2)^{\frac{1}{3}} = 1 + 2 = 3\\ f'(x) = \frac{1}{3}(x - 2)^{-\frac{2}{3}}\\ f'(x) = 0\,\, \implies \frac{1}{3}(x - 2)^{-\frac{2}{3}} = 0\\ \textsf{No solution exists} \\ \textsf{Therefore the function does not}\\ \textsf{satisfy Rolle's theorem because}\,\, f(2) \neq f(10) \\ \textsf{and}\,\, f'(x) \neq 0 \,\, \textsf{for}\,\, 2 \leq x \leq 10


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS