Check the validity of Rolle’s Theorem for f(x)=1+(x−2)(1/3)f(x)=1+(x-2)^(1/3)f(x)=1+(x−2)(1/3) on the interval [2, 10].
f(x)=1+(x−2)13f(2)=1+(2−2)13=1+0=1f(10)=1+(10−2)13=1+2=3f′(x)=13(x−2)−23f′(x)=0 ⟹ 13(x−2)−23=0No solution existsTherefore the function does notsatisfy Rolle’s theorem because f(2)≠f(10)and f′(x)≠0 for 2≤x≤10\displaystyle f(x) = 1 + (x - 2)^{\frac{1}{3}}\\ f(2) = 1 + (2 - 2)^{\frac{1}{3}} = 1 + 0 = 1\\ f(10) = 1 + (10 - 2)^{\frac{1}{3}} = 1 + 2 = 3\\ f'(x) = \frac{1}{3}(x - 2)^{-\frac{2}{3}}\\ f'(x) = 0\,\, \implies \frac{1}{3}(x - 2)^{-\frac{2}{3}} = 0\\ \textsf{No solution exists} \\ \textsf{Therefore the function does not}\\ \textsf{satisfy Rolle's theorem because}\,\, f(2) \neq f(10) \\ \textsf{and}\,\, f'(x) \neq 0 \,\, \textsf{for}\,\, 2 \leq x \leq 10f(x)=1+(x−2)31f(2)=1+(2−2)31=1+0=1f(10)=1+(10−2)31=1+2=3f′(x)=31(x−2)−32f′(x)=0⟹31(x−2)−32=0No solution existsTherefore the function does notsatisfy Rolle’s theorem becausef(2)=f(10)andf′(x)=0for2≤x≤10
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments