Given: f ( x ) = x 2 3 − x f(x)=\sqrt[3]{x^2}-x f ( x ) = 3 x 2 − x , [ − 1 , 1 ] \left [ -1,1 \right ] [ − 1 , 1 ]
Find the first derivative of the given function.
f ( x ) = x 2 3 − x ⇒ f ( x ) = x 2 3 − x f(x)=\sqrt[3]{x^2}-x \Rightarrow f(x) =x^{\frac{2}{3}}-x f ( x ) = 3 x 2 − x ⇒ f ( x ) = x 3 2 − x
⇒ f ′ ( x ) = 2 3 x − 1 3 − 1 \Rightarrow f'(x)=\frac{2}{3}x^{\frac{-1}{3}}-1 ⇒ f ′ ( x ) = 3 2 x 3 − 1 − 1
For critical values, set f ′ ( x ) = 0 ⇒ 2 3 x − 1 3 − 1 = 0 f'(x)=0\Rightarrow \frac{2}{3}x^{\frac{-1}{3}}-1=0 f ′ ( x ) = 0 ⇒ 3 2 x 3 − 1 − 1 = 0
⇒ x − 1 3 = 3 2 ⇒ x = ( 2 3 ) 3 = 8 27 \Rightarrow x^{\frac{-1}{3}}=\frac{3}{2}\Rightarrow x=\left ( \frac{2}{3} \right )^3=\frac{8}{27} ⇒ x 3 − 1 = 2 3 ⇒ x = ( 3 2 ) 3 = 27 8
Also observe that x = 8 27 ∈ [ − 1 , 1 ] x=\frac{8}{27}\in \left [ -1,1 \right ] x = 27 8 ∈ [ − 1 , 1 ]
Now find the function values at the end values x = − 1 , 1 x=-1,1 x = − 1 , 1
and at the critical value x = 8 27 x=\frac{8}{27} x = 27 8
x = − 1 ⇒ f ( − 1 ) = ( − 1 ) 2 3 − ( − 1 ) = 1 + 1 = 2 x=-1\Rightarrow f(-1)=(-1)^{\frac{2}{3}}-(-1)=1+1=2 x = − 1 ⇒ f ( − 1 ) = ( − 1 ) 3 2 − ( − 1 ) = 1 + 1 = 2 (Absolute maximum)
x = 1 ⇒ f ( 1 ) = ( 1 ) 2 3 − ( 1 ) = 1 − 1 = 0 x=1\Rightarrow f(1)=(1)^{\frac{2}{3}}-(1)=1-1=0 x = 1 ⇒ f ( 1 ) = ( 1 ) 3 2 − ( 1 ) = 1 − 1 = 0 (Absolute minimum)
x = 8 27 ⇒ f ( 8 27 ) = ( 8 27 ) 2 3 − ( 1 ) = 4 9 x=\frac{8}{27}\Rightarrow f(\frac{8}{27})=(\frac{8}{27})^{\frac{2}{3}}-(1)=\frac{4}{9} x = 27 8 ⇒ f ( 27 8 ) = ( 27 8 ) 3 2 − ( 1 ) = 9 4
Therefore f ( x ) f(x) f ( x ) has absolute maximum at x = − 1 x=-1 x = − 1 and
absolute maximum value = 2 =2 = 2
f ( x ) f(x) f ( x ) has absolute minimum value at x = 1 x=1 x = 1 and
absolute minimum value = 0 =0 = 0
Comments