Locate the absolute maximum and minimum for each of the following functions and justify your responses. (Show all work and justify)
Β π(π₯) = (Cube root of x^2) β π₯ on the interval [β1,1]
Given: "f(x)=\\sqrt[3]{x^2}-x" , "\\left [ -1,1 \\right ]"
Find the first derivative of the given function.
"f(x)=\\sqrt[3]{x^2}-x \\Rightarrow f(x) =x^{\\frac{2}{3}}-x"
"\\Rightarrow f'(x)=\\frac{2}{3}x^{\\frac{-1}{3}}-1"
For critical values, set "f'(x)=0\\Rightarrow \\frac{2}{3}x^{\\frac{-1}{3}}-1=0"
"\\Rightarrow x^{\\frac{-1}{3}}=\\frac{3}{2}\\Rightarrow x=\\left ( \\frac{2}{3} \\right )^3=\\frac{8}{27}"
Also observe that "x=\\frac{8}{27}\\in \\left [ -1,1 \\right ]"
Now find the function values at the end values "x=-1,1"
and at the critical value "x=\\frac{8}{27}"
"x=-1\\Rightarrow f(-1)=(-1)^{\\frac{2}{3}}-(-1)=1+1=2" (Absolute maximum)
"x=1\\Rightarrow f(1)=(1)^{\\frac{2}{3}}-(1)=1-1=0" (Absolute minimum)
"x=\\frac{8}{27}\\Rightarrow f(\\frac{8}{27})=(\\frac{8}{27})^{\\frac{2}{3}}-(1)=\\frac{4}{9}"
Therefore "f(x)" has absolute maximum at "x=-1" and
absolute maximum value "=2"
"f(x)" has absolute minimum value at "x=1" and
absolute minimum value "=0"
Comments
Leave a comment