Question #161101

Locate the absolute maximum and minimum for each of the following functions and justify your responses. (Show all work and justify)


 𝑓(𝑥) = (Cube root of x^2) − 𝑥 on the interval [−1,1]


1
Expert's answer
2021-02-05T04:57:01-0500

Given: f(x)=x23xf(x)=\sqrt[3]{x^2}-x , [1,1]\left [ -1,1 \right ]

Find the first derivative of the given function.

f(x)=x23xf(x)=x23xf(x)=\sqrt[3]{x^2}-x \Rightarrow f(x) =x^{\frac{2}{3}}-x

f(x)=23x131\Rightarrow f'(x)=\frac{2}{3}x^{\frac{-1}{3}}-1

For critical values, set f(x)=023x131=0f'(x)=0\Rightarrow \frac{2}{3}x^{\frac{-1}{3}}-1=0

x13=32x=(23)3=827\Rightarrow x^{\frac{-1}{3}}=\frac{3}{2}\Rightarrow x=\left ( \frac{2}{3} \right )^3=\frac{8}{27}

Also observe that x=827[1,1]x=\frac{8}{27}\in \left [ -1,1 \right ]

Now find the function values at the end values x=1,1x=-1,1

and at the critical value x=827x=\frac{8}{27}

x=1f(1)=(1)23(1)=1+1=2x=-1\Rightarrow f(-1)=(-1)^{\frac{2}{3}}-(-1)=1+1=2 (Absolute maximum)

x=1f(1)=(1)23(1)=11=0x=1\Rightarrow f(1)=(1)^{\frac{2}{3}}-(1)=1-1=0 (Absolute minimum)

x=827f(827)=(827)23(1)=49x=\frac{8}{27}\Rightarrow f(\frac{8}{27})=(\frac{8}{27})^{\frac{2}{3}}-(1)=\frac{4}{9}

Therefore f(x)f(x) has absolute maximum at x=1x=-1 and

absolute maximum value =2=2

f(x)f(x) has absolute minimum value at x=1x=1 and

absolute minimum value =0=0





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS