Given: f(x)=3x2−x , [−1,1]
Find the first derivative of the given function.
f(x)=3x2−x⇒f(x)=x32−x
⇒f′(x)=32x3−1−1
For critical values, set f′(x)=0⇒32x3−1−1=0
⇒x3−1=23⇒x=(32)3=278
Also observe that x=278∈[−1,1]
Now find the function values at the end values x=−1,1
and at the critical value x=278
x=−1⇒f(−1)=(−1)32−(−1)=1+1=2 (Absolute maximum)
x=1⇒f(1)=(1)32−(1)=1−1=0 (Absolute minimum)
x=278⇒f(278)=(278)32−(1)=94
Therefore f(x) has absolute maximum at x=−1 and
absolute maximum value =2
f(x) has absolute minimum value at x=1 and
absolute minimum value =0
Comments