Kim(x,y)->(0,0) sinx/y exist.is it true or false. Give reasons for your answer
Solution:
"\\mathrm{Let's \\ find\\:two\\:different\\:paths\\:to\\:approach\\:the\\:point\\:that}"
"\\mathrm {\\:gives\\:different\\:values\\:for\\:the\\:limit}"
Case 1: "\\lim_{(x,y)\\rightarrow (0,0)}(\\sin (\\dfrac{x}{y}))" along "x=0" :
"=\\sin (\\dfrac{0}{y})=\\sin (0)=0"
Case 2: "\\lim_{(x,y)\\rightarrow (0,0)}(\\sin (\\dfrac{x}{y}))" along "x=y" :
"=\\sin (\\dfrac{y}{y})=\\sin (1)"
Thus, from case 1 and 2, we have that given limit diverges (or does not exist).
Hence, the given statement is false.
Comments
Leave a comment