find "y'" for "y= x\u00b3 (sqrt(x\u00b2 + 1))"
"y=x^3\\cdot\\sqrt{x\u00b2+1}"
"y'=(x^3)'\\cdot\\sqrt{x^2+1}+x^3\\cdot(\\sqrt{x^2+1})'="
"\\displaystyle 3x^2\\cdot\\sqrt{x^2+1}+x^3\\cdot\\frac{1}{2\\sqrt{x^2+1}}\\cdot(x^2+1)'="
"\\displaystyle 3x^2\\sqrt{x^2+1}+x^3\\cdot\\frac{1}{2\\sqrt{x^2+1}}\\cdot2x="
"\\displaystyle 3x^2\\sqrt{x^2+1}+\\frac{x^4}{\\sqrt{x^2+1}}="
"\\displaystyle 3x^2\\sqrt{x^2+1}\\cdot\\frac{\\sqrt{x^2+1}}{\\sqrt{x^2+1}}+\\frac{x^4}{\\sqrt{x^2+1}}="
"\\displaystyle \\frac{3x^2(x^2+1)}{\\sqrt{x^2+1}}+\\frac{x^4}{\\sqrt{x^2+1}}="
"\\displaystyle \\frac{3x^4+3x^2+x^4}{\\sqrt{x^2+1}}="
"\\displaystyle \\frac{4x^4+3x^2}{\\sqrt{x^2+1}}"
Comments
Leave a comment