Question #160451

find yy' for y=x3(sqrt(x2+1))y= x³ (sqrt(x² + 1))


1
Expert's answer
2021-02-02T14:59:38-0500

y=x3x2+1y=x^3\cdot\sqrt{x²+1}


y=(x3)x2+1+x3(x2+1)=y'=(x^3)'\cdot\sqrt{x^2+1}+x^3\cdot(\sqrt{x^2+1})'=


3x2x2+1+x312x2+1(x2+1)=\displaystyle 3x^2\cdot\sqrt{x^2+1}+x^3\cdot\frac{1}{2\sqrt{x^2+1}}\cdot(x^2+1)'=


3x2x2+1+x312x2+12x=\displaystyle 3x^2\sqrt{x^2+1}+x^3\cdot\frac{1}{2\sqrt{x^2+1}}\cdot2x=

3x2x2+1+x4x2+1=\displaystyle 3x^2\sqrt{x^2+1}+\frac{x^4}{\sqrt{x^2+1}}=


3x2x2+1x2+1x2+1+x4x2+1=\displaystyle 3x^2\sqrt{x^2+1}\cdot\frac{\sqrt{x^2+1}}{\sqrt{x^2+1}}+\frac{x^4}{\sqrt{x^2+1}}=


3x2(x2+1)x2+1+x4x2+1=\displaystyle \frac{3x^2(x^2+1)}{\sqrt{x^2+1}}+\frac{x^4}{\sqrt{x^2+1}}=


3x4+3x2+x4x2+1=\displaystyle \frac{3x^4+3x^2+x^4}{\sqrt{x^2+1}}=


4x4+3x2x2+1\displaystyle \frac{4x^4+3x^2}{\sqrt{x^2+1}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS