y = x 3 ⋅ x 2 + 1 y=x^3\cdot\sqrt{x²+1} y = x 3 ⋅ x 2 + 1
y ′ = ( x 3 ) ′ ⋅ x 2 + 1 + x 3 ⋅ ( x 2 + 1 ) ′ = y'=(x^3)'\cdot\sqrt{x^2+1}+x^3\cdot(\sqrt{x^2+1})'= y ′ = ( x 3 ) ′ ⋅ x 2 + 1 + x 3 ⋅ ( x 2 + 1 ) ′ =
3 x 2 ⋅ x 2 + 1 + x 3 ⋅ 1 2 x 2 + 1 ⋅ ( x 2 + 1 ) ′ = \displaystyle 3x^2\cdot\sqrt{x^2+1}+x^3\cdot\frac{1}{2\sqrt{x^2+1}}\cdot(x^2+1)'= 3 x 2 ⋅ x 2 + 1 + x 3 ⋅ 2 x 2 + 1 1 ⋅ ( x 2 + 1 ) ′ =
3 x 2 x 2 + 1 + x 3 ⋅ 1 2 x 2 + 1 ⋅ 2 x = \displaystyle 3x^2\sqrt{x^2+1}+x^3\cdot\frac{1}{2\sqrt{x^2+1}}\cdot2x= 3 x 2 x 2 + 1 + x 3 ⋅ 2 x 2 + 1 1 ⋅ 2 x =
3 x 2 x 2 + 1 + x 4 x 2 + 1 = \displaystyle 3x^2\sqrt{x^2+1}+\frac{x^4}{\sqrt{x^2+1}}= 3 x 2 x 2 + 1 + x 2 + 1 x 4 =
3 x 2 x 2 + 1 ⋅ x 2 + 1 x 2 + 1 + x 4 x 2 + 1 = \displaystyle 3x^2\sqrt{x^2+1}\cdot\frac{\sqrt{x^2+1}}{\sqrt{x^2+1}}+\frac{x^4}{\sqrt{x^2+1}}= 3 x 2 x 2 + 1 ⋅ x 2 + 1 x 2 + 1 + x 2 + 1 x 4 =
3 x 2 ( x 2 + 1 ) x 2 + 1 + x 4 x 2 + 1 = \displaystyle \frac{3x^2(x^2+1)}{\sqrt{x^2+1}}+\frac{x^4}{\sqrt{x^2+1}}= x 2 + 1 3 x 2 ( x 2 + 1 ) + x 2 + 1 x 4 =
3 x 4 + 3 x 2 + x 4 x 2 + 1 = \displaystyle \frac{3x^4+3x^2+x^4}{\sqrt{x^2+1}}= x 2 + 1 3 x 4 + 3 x 2 + x 4 =
4 x 4 + 3 x 2 x 2 + 1 \displaystyle \frac{4x^4+3x^2}{\sqrt{x^2+1}} x 2 + 1 4 x 4 + 3 x 2
Comments