find y′y'y′ for y=x3(sqrt(x2+1))y= x³ (sqrt(x² + 1))y=x3(sqrt(x2+1))
y=x3⋅x2+1y=x^3\cdot\sqrt{x²+1}y=x3⋅x2+1
y′=(x3)′⋅x2+1+x3⋅(x2+1)′=y'=(x^3)'\cdot\sqrt{x^2+1}+x^3\cdot(\sqrt{x^2+1})'=y′=(x3)′⋅x2+1+x3⋅(x2+1)′=
3x2⋅x2+1+x3⋅12x2+1⋅(x2+1)′=\displaystyle 3x^2\cdot\sqrt{x^2+1}+x^3\cdot\frac{1}{2\sqrt{x^2+1}}\cdot(x^2+1)'=3x2⋅x2+1+x3⋅2x2+11⋅(x2+1)′=
3x2x2+1+x3⋅12x2+1⋅2x=\displaystyle 3x^2\sqrt{x^2+1}+x^3\cdot\frac{1}{2\sqrt{x^2+1}}\cdot2x=3x2x2+1+x3⋅2x2+11⋅2x=
3x2x2+1+x4x2+1=\displaystyle 3x^2\sqrt{x^2+1}+\frac{x^4}{\sqrt{x^2+1}}=3x2x2+1+x2+1x4=
3x2x2+1⋅x2+1x2+1+x4x2+1=\displaystyle 3x^2\sqrt{x^2+1}\cdot\frac{\sqrt{x^2+1}}{\sqrt{x^2+1}}+\frac{x^4}{\sqrt{x^2+1}}=3x2x2+1⋅x2+1x2+1+x2+1x4=
3x2(x2+1)x2+1+x4x2+1=\displaystyle \frac{3x^2(x^2+1)}{\sqrt{x^2+1}}+\frac{x^4}{\sqrt{x^2+1}}=x2+13x2(x2+1)+x2+1x4=
3x4+3x2+x4x2+1=\displaystyle \frac{3x^4+3x^2+x^4}{\sqrt{x^2+1}}=x2+13x4+3x2+x4=
4x4+3x2x2+1\displaystyle \frac{4x^4+3x^2}{\sqrt{x^2+1}}x2+14x4+3x2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments