Question #160399

How many terms of the sequence tn = 130 - Sn are included for the sum of the series to equal 1690?



1
Expert's answer
2021-02-18T13:48:54-0500
t1=130S1,S1=t1t_1=130-S_1, S_1=t_1

2t1=130=>t1=652t_1=130=>t_1=65

S2=65+t2,t2=130S2=130(65+t2)S_2=65+t_2, t_2=130-S_2=130-(65+t_2)

t2=12(65)t_2=\dfrac{1}{2}(65)


S3=65+12(65)+t3,S_3=65+\dfrac{1}{2}(65)+t_3,

t3=130S2=130(65+12(65)+t3)t_3=130-S_2=130-(65+\dfrac{1}{2}(65)+t_3 )

t3=(12)2(65)t_3=(\dfrac{1}{2})^2(65)

t1=65,q=12t_1=65, q=\dfrac{1}{2}


tn=t1qn1t_n=t_1q^{n-1}

Sn=i=1nti=i=1n65(12)nS_n=\displaystyle\sum_{i=1}^nt_i=\displaystyle\sum_{i=1}^n65\big(\dfrac{1}{2}\big)^n

0<12<1,S=i=1ti=1112=20<\dfrac{1}{2}<1, S=\displaystyle\sum_{i=1}^{\infin}t_i=\dfrac{1}{1-\dfrac{1}{2}}=2Sn=i=1n65(12)n<65(2)=130S_n=\displaystyle\sum_{i=1}^n65\big(\dfrac{1}{2}\big)^n<65(2)=130


The sum of the series is not equal 1690 for nN.n\in\N.


Therefore there are no solutions.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS