How many terms of the sequence tn = 130 - Sn are included for the sum of the series to equal 1690?
"2t_1=130=>t_1=65"
"S_2=65+t_2, t_2=130-S_2=130-(65+t_2)"
"t_2=\\dfrac{1}{2}(65)"
"t_3=130-S_2=130-(65+\\dfrac{1}{2}(65)+t_3 )"
"t_3=(\\dfrac{1}{2})^2(65)"
"t_1=65, q=\\dfrac{1}{2}"
"S_n=\\displaystyle\\sum_{i=1}^nt_i=\\displaystyle\\sum_{i=1}^n65\\big(\\dfrac{1}{2}\\big)^n"
"0<\\dfrac{1}{2}<1, S=\\displaystyle\\sum_{i=1}^{\\infin}t_i=\\dfrac{1}{1-\\dfrac{1}{2}}=2""S_n=\\displaystyle\\sum_{i=1}^n65\\big(\\dfrac{1}{2}\\big)^n<65(2)=130"
The sum of the series is not equal 1690 for "n\\in\\N."
Therefore there are no solutions.
Comments
Leave a comment