Question #160432

If Z = 2x-y/ x+y

Find dz/dx and dz/dy


1
Expert's answer
2021-02-04T07:41:55-0500

if z=2xyx+yz={2x-y \over x+y}


Find dzdx{dz \over dx} and dzdy{dz\over dy}


let u= 2x-y and v=x+y


using quotient ruledzdx=vdudxudvdxv2{dz \over dx}={v{du \over dx}-u{dv \over dx} \over v^2}


dudx=2{du \over dx}=2


dvdz=1{dv \over dz}=1


dzdx=(x+y)(2)(2xy)1(x+y)2{dz \over dx}={(x+y)(2)-(2x-y)1 \over (x+y)^2}


dzdx=2x+2y2x+y(x+y)2{dz \over dx}={2x +2y-2x+y \over (x+y)^2}


dzdx=3y(x+y)2{dz \over dx}={3y\over (x+y)^2}




using quotient ruledzdy=vdudyudvdyv2{dz \over dy}={v{du \over dy}-u{dv \over dy} \over v^2}


dudx=1{du \over dx}=-1


dvdz=1{dv \over dz}=1


dzdx=1(x+y)(2xy)1(x+y)2{dz \over dx}={-1(x+y)-(2x-y)1\over (x+y)^2}


dzdx=xy2x+y(x+y)2{dz \over dx}={-x-y-2x+y \over (x+y)^2}


dzdx=3x(x+y)2{dz \over dx}={-3x \over (x+y)^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS