If Z = 2x-y/ x+y
Find dz/dx and dz/dy
if "z={2x-y \\over x+y}"
Find "{dz \\over dx}" and "{dz\\over dy}"
let u= 2x-y and v=x+y
using quotient rule"{dz \\over dx}={v{du \\over dx}-u{dv \\over dx} \\over v^2}"
"{du \\over dx}=2"
"{dv \\over dz}=1"
"{dz \\over dx}={(x+y)(2)-(2x-y)1 \\over (x+y)^2}"
"{dz \\over dx}={2x +2y-2x+y \\over (x+y)^2}"
"{dz \\over dx}={3y\\over (x+y)^2}"
using quotient rule"{dz \\over dy}={v{du \\over dy}-u{dv \\over dy} \\over v^2}"
"{du \\over dx}=-1"
"{dv \\over dz}=1"
"{dz \\over dx}={-1(x+y)-(2x-y)1\\over (x+y)^2}"
"{dz \\over dx}={-x-y-2x+y \\over (x+y)^2}"
"{dz \\over dx}={-3x \\over (x+y)^2}"
Comments
Leave a comment