Question #160629

a child has made a cubical region R which is bounded by the coordinate planes and the planes x=4 y=4 and z=4 in the first octant only. determine the average value of the function f=x^3y^3z^3 over this region R


1
Expert's answer
2021-02-12T14:09:53-0500

Average=1Avf(x,y,z)dxdydz\frac{1}{A}\int\int\int_vf(x,y,z)dxdydz Average=164040404(x3y3z3)dxdydzAverage=1640404[x44y3z3]04dydzAverage=1640404[444y3z3]04dydzAverage=1640404[64y3z3]dydzAverage=1640404[64y44z3]04dzAverage=16404[64×64z3]04dzAverage=164[64×64z44]04dzAverage=164[64×64×64]Average=4096Average=\frac{1}{64}\int_0^4\int_0^4\int_0^4(x^3y^3z^3)dxdydz\\ Average=\frac{1}{64} \int_0^4\int_0^4[\frac{x^4}{4}y^3z^3]_0^4dydz\\ Average=\frac{1}{64} \int_0^4\int_0^4[\frac{4^4}{4}y^3z^3]_0^4dydz\\ Average= \frac{1}{64}\int_0^4\int_0^4[64y^3z^3]dydz\\ Average=\frac{1}{64} \int_0^4\int_0^4[64\frac{y^4}{4}z^3]_0^4dz\\ Average= \frac{1}{64} \int_0^4[64\times 64z^3]_0^4dz\\ Average=\frac{1}{64} [64\times 64\frac{z^4}{4}]_0^4dz\\ Average=\frac{1}{64}[64\times 64\times64]\\ Average=4096


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS