Find the mass of a triangular lamina whose vertices are (0,0), (1, 1), (0.1). if the density of the lamina is p(x, y) = sin (y^2).
Consider the triangular lamina as shown in the figure below:
The region "R" in cartesian coordinates is given by,
"R=\\{(x,y)|0\\eqslantless y \\eqslantless1, 0 \\eqslantless x \\eqslantless y \\}"
The mass of the lamina with density "\\rho(x,y)=sin(y^2)" is evaluated as,
Mass"(m)=\\iint_{R}\\rho(x,y)dA"
"=\\int_{y=0}^{1}\\int_{x=0}^{y}sin(y^2)dxdy"
"=\\int_{y=0}^{1}sin(y^2)[x]_{x=0}^{y}dy"
"=\\int_{y=0}^{1}ysin(y^2)dy"
Let "u=y^2" , then "\\frac{1}{2}du=ydy" , "0\\eqslantless u \\eqslantless 1" , so the integral is,
"=\\int_{u=0}^{1}\\frac{1}{2}sin(u)du"
"=\\frac{1}{2}[-cos(u)]_{=0}^{1}"
"=\\frac{1}{2}(1-cos(1)) \\approx 0.22984"
Comments
Leave a comment