Answer to Question #161758 in Calculus for Vishal

Question #161758

Prove that if ∞n=0an is a convergent series, then limn→∞an = 0 (i.e., starting with n = 0 in the series yield the same result)


1
Expert's answer
2021-02-23T08:46:03-0500

a0,a1,a2,....,an are terms of the convergent series;a_0,a_1,a_2,....,a_n \\\text{ are terms of the convergent series};

Sn,Sn+1 are partial sumsS_n,S_{n+1}\text{ are partial sums}

Sn=a0+a1+...+an1+anS_n=a_0+a_1+...+a_{n-1}+a_{n}

Sn+1=a0+a1+...+an+an+1S_{n+1}=a_0+a_1+...+a_{n}+a_{n+1}

an=Sn+1Sna_n =S_{n+1}-S_n

Since a0,a1,a2,....,an are terms of the convergent series there is a limit of partial sums\text{Since }a_0,a_1,a_2,....,a_n \\ \text{ are terms of the convergent series there is a limit of partial sums}

limnSn=S\lim\limits_{n\rightarrow\infin}S_n=S

limnSn+1=S\lim\limits_{n\rightarrow\infin}S_{n+1}=S

limnan=limn(Sn+1Sn)=limnSn+1limnSn=0\lim\limits_{n\rightarrow\infin}a_n=\lim\limits_{n\rightarrow\infin}(S_{n+1}-S_n)=\lim\limits_{n\rightarrow\infin}S_{n+1}-\lim\limits_{n\rightarrow\infin}S_n=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment