Prove that if ∞n=0an is a convergent series, then limn→∞an = 0 (i.e., starting with n = 0 in the series yield the same result)
"a_0,a_1,a_2,....,a_n \\\\\\text{ are terms of the convergent series};"
"S_n,S_{n+1}\\text{ are partial sums}"
"S_n=a_0+a_1+...+a_{n-1}+a_{n}"
"S_{n+1}=a_0+a_1+...+a_{n}+a_{n+1}"
"a_n =S_{n+1}-S_n"
"\\text{Since }a_0,a_1,a_2,....,a_n \\\\ \\text{ are terms of the convergent series there is a limit of partial sums}"
"\\lim\\limits_{n\\rightarrow\\infin}S_n=S"
"\\lim\\limits_{n\\rightarrow\\infin}S_{n+1}=S"
"\\lim\\limits_{n\\rightarrow\\infin}a_n=\\lim\\limits_{n\\rightarrow\\infin}(S_{n+1}-S_n)=\\lim\\limits_{n\\rightarrow\\infin}S_{n+1}-\\lim\\limits_{n\\rightarrow\\infin}S_n=0"
Comments
Leave a comment