Let ∞n=1an be a series of real numbers and N0 ∈ N. Show that ∞n=1an converges if and only if ∞n=N0 an converges
Let:
"\\displaystyle\\sum_{n=1}^\\infin a_n=S_n"
then:
"\\displaystyle\\sum_{n=1}^\\infin (N_0a_n)=N_0\\cdot S_n"
If "\\displaystyle\\sum_{n=1}^\\infin (N_0a_n)" converges, then "(N_0\\cdot S_n)\\to S" for some "S", and "S_n\\to S\/N_0" ; that is,
"\\displaystyle\\sum_{n=1}^\\infin a_n" converges.
If "\\displaystyle\\sum_{n=1}^\\infin (N_0a_n)" diverges, then "(N_0\\cdot S_n)" does not tend to some "S" . So, "S_n" also does not tend to some "(S\/N_0)" , that is, "\\displaystyle\\sum_{n=1}^\\infin a_n" diverges.
Comments
Leave a comment