Let:
n=1∑∞an=Sn
then:
n=1∑∞(N0an)=N0⋅Sn
If n=1∑∞(N0an) converges, then (N0⋅Sn)→S for some S, and Sn→S/N0 ; that is,
n=1∑∞an converges.
If n=1∑∞(N0an) diverges, then (N0⋅Sn) does not tend to some S . So, Sn also does not tend to some (S/N0) , that is, n=1∑∞an diverges.
Comments