Prove that the series ∞n=1 n^n/n! diverges
By the Inequality of arithmetic and geometric means we have:
1⋅(n−1)≤n/2\sqrt{1\cdot (n-1)}\leq n/21⋅(n−1)≤n/2 or 1⋅(n−1)≤(n/2)21\cdot (n-1)\leq (n/2)^21⋅(n−1)≤(n/2)2
2⋅(n−2)≤n/2\sqrt{2\cdot (n-2)}\leq n/22⋅(n−2)≤n/2 , or 2⋅(n−2)≤(n/2)22\cdot (n-2)\leq (n/2)^22⋅(n−2)≤(n/2)2
...
if n is even, the last inequality will be n/2≤n/2n/2\leq n/2n/2≤n/2,
if n is odd, the last inequality will be (n−1)/2⋅(n+1)/2≤(n/2)2(n-1)/2\cdot (n+1)/2\leq (n/2)^2(n−1)/2⋅(n+1)/2≤(n/2)2
Multiplying all this inequalities (without the square roots), we obtain:
(n−1)!≤(n/2)n−1(n-1)!\leq (n/2)^{n-1}(n−1)!≤(n/2)n−1 and
n!≤2(n/2)nn!\leq 2(n/2)^nn!≤2(n/2)n
Therefore, nnn!≥nn2(n/2)n=2n−1\frac{n^n}{n!}\geq\frac{n^n}{2(n/2)^n}=2^{n-1}n!nn≥2(n/2)nnn=2n−1
The values 2n−12^{n-1}2n−1 are unbounded from above, therefore the sequence nn/n!{n^n}/n!nn/n! is unbounded too and hence, it is divergent.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments