Show that ∞n=1 (x^n)/(n^n) converges for all x ∈ R
Let us show that "\\sum_{n=1}^{\\infty} \\frac{x^n}{n^n}" converges for all "x \\in\\mathbb R." Let us use Cauchy's root convergence test for series:
"L=\\lim\\limits_{n\\to\\infty}\\sqrt[n]{|\\frac{x^n}{n^n}|}=\\lim\\limits_{n\\to\\infty}\\frac{|x|}{n}=|x|\\cdot\\lim\\limits_{n\\to\\infty}\\frac{1}{n}=|x|\\cdot 0=0"
Since "L<1" for "x\\in\\mathbb R," we conclude that "\\sum_{n=1}^{\\infty} \\frac{x^n}{n^n}" converges for all "x \\in\\mathbb R."
Comments
Leave a comment