∑ n = 1 ∞ ( − 1 n − 1 ) x n 1 n \sum _{n=1}^{\infty \:}\left(-1^{n-1}\right)x^n\frac{1}{n} ∑ n = 1 ∞ ( − 1 n − 1 ) x n n 1
I f t h e r e e x i s t s a n N s o t h a t f o r a l l n ≥ N , a n ≠ 0 a n d lim n → ∞ ∣ a n + 1 a n ∣ = L : \mathrm{If\:there\:exists\:an\:}N\mathrm{\:so\:that\:for\:all\:}n\ge N,\:\quad a_n\ne 0\mathrm{\:and\:}\lim _{n\to \infty }|\frac{a_{n+1}}{a_n}|=L: If there exists an N so that for all n ≥ N , a n = 0 and lim n → ∞ ∣ a n a n + 1 ∣ = L :
I f L < 1 , t h e n ∑ a n c o n v e r g e s \mathrm{If\:}L<1\mathrm{,\:then\:}\sum a_n\mathrm{\:converges} If L < 1 , then ∑ a n converges
I f L > 1 , t h e n ∑ a n d i v e r g e s \mathrm{If\:}L>1\mathrm{,\:then\:}\sum a_n\mathrm{\:diverges} If L > 1 , then ∑ a n diverges
I f L = 1 , t h e n t h e t e s t i s i n c o n c l u s i v e \mathrm{If\:}L=1\mathrm{,\:then\:the\:test\:is\:inconclusive} If L = 1 , then the test is inconclusive
∣ a n + 1 a n ∣ = ∣ ( − 1 ( n + 1 ) − 1 ) x ( n + 1 ) 1 ( n + 1 ) ( − 1 n − 1 ) x n 1 n ∣ \left|\frac{a_{n+1}}{a_n}\right|=\left|\frac{\left(-1^{\left(n+1\right)-1}\right)x^{\left(n+1\right)}\frac{1}{\left(n+1\right)}}{\left(-1^{n-1}\right)x^n\frac{1}{n}}\right| ∣ ∣ a n a n + 1 ∣ ∣ = ∣ ∣ ( − 1 n − 1 ) x n n 1 ( − 1 ( n + 1 ) − 1 ) x ( n + 1 ) ( n + 1 ) 1 ∣ ∣
lim n → ∞ ( ∣ ( − 1 ( n + 1 ) − 1 ) x ( n + 1 ) 1 ( n + 1 ) ( − 1 n − 1 ) x n 1 n ∣ ) \lim _{n\to \infty \:}\left(\left|\frac{\left(-1^{\left(n+1\right)-1}\right)x^{\left(n+1\right)}\frac{1}{\left(n+1\right)}}{\left(-1^{n-1}\right)x^n\frac{1}{n}}\right|\right) lim n → ∞ ( ∣ ∣ ( − 1 n − 1 ) x n n 1 ( − 1 ( n + 1 ) − 1 ) x ( n + 1 ) ( n + 1 ) 1 ∣ ∣ )
( − 1 ( n + 1 ) − 1 ) x n + 1 1 n + 1 ( − 1 n − 1 ) x n 1 n \frac{\left(-1^{\left(n+1\right)-1}\right)x^{n+1}\frac{1}{n+1}}{\left(-1^{n-1}\right)x^n\frac{1}{n}} ( − 1 n − 1 ) x n n 1 ( − 1 ( n + 1 ) − 1 ) x n + 1 n + 1 1
− 1 n + 1 − 1 x n + 1 1 n + 1 − 1 n − 1 x n 1 n \frac{-1^{n+1-1}x^{n+1}\frac{1}{n+1}}{-1^{n-1}x^n\frac{1}{n}} − 1 n − 1 x n n 1 − 1 n + 1 − 1 x n + 1 n + 1 1
− 1 n + 1 x n + 1 − 1 n − 1 ⋅ 1 n x n \frac{-\frac{1}{n+1}x^{n+1}}{-1^{n-1}\cdot \frac{1}{n}x^n} − 1 n − 1 ⋅ n 1 x n − n + 1 1 x n + 1
x n + 1 1 n + 1 1 n − 1 x n 1 n \frac{x^{n+1}\frac{1}{n+1}}{1^{n-1}x^n\frac{1}{n}} 1 n − 1 x n n 1 x n + 1 n + 1 1
x n + 1 n + 1 1 n − 1 ⋅ 1 n x n \frac{\frac{x^{n+1}}{n+1}}{1^{n-1}\cdot \frac{1}{n}x^n} 1 n − 1 ⋅ n 1 x n n + 1 x n + 1
x n + 1 x n ( n + 1 ) n \frac{x^{n+1}}{\frac{x^n\left(n+1\right)}{n}} n x n ( n + 1 ) x n + 1
x n + 1 n ( n + 1 ) x n \frac{x^{n+1}n}{\left(n+1\right)x^n} ( n + 1 ) x n x n + 1 n
n x n + 1 \frac{nx}{n+1} n + 1 n x
lim n → ∞ ( ∣ n x n + 1 ∣ ) \lim _{n\to \infty \:}\left(\left|\frac{nx}{n+1}\right|\right) lim n → ∞ ( ∣ ∣ n + 1 n x ∣ ∣ )
= ∣ x ∣ ⋅ lim n → ∞ ( ∣ n n + 1 ∣ ) =\left|x\right|\cdot \lim _{n\to \infty \:}\left(\left|\frac{n}{n+1}\right|\right) = ∣ x ∣ ⋅ lim n → ∞ ( ∣ ∣ n + 1 n ∣ ∣ )
∣ x ∣ ⋅ 1 \left|x\right|\cdot \:1 ∣ x ∣ ⋅ 1
− 1 < x < 1 -1<x<1 − 1 < x < 1
C h e c k c o n v e r g e n c e f o r L = 1 \mathrm{Check\:convergence\:for\:}L=1 Check convergence for L = 1
lim n → ∞ ( 1 n ) = 0 \lim _{n\to \infty \:}\left(\frac{1}{n}\right)=0 lim n → ∞ ( n 1 ) = 0
T h e r e f o r e , t h e c o n v e r g e n c e i n t e r v a l o f ∑ n = 1 ∞ ( − 1 n − 1 ) x n 1 n i s − 1 ≤ x < 1 \mathrm{Therefore,\:the\:convergence\:interval\:of\:}\sum _{n=1}^{\infty \:}\left(-1^{n-1}\right)x^n\frac{1}{n}\mathrm{\:is\:} -1\le \:x<1 Therefore , the convergence interval of ∑ n = 1 ∞ ( − 1 n − 1 ) x n n 1 is − 1 ≤ x < 1
Comments