Show that ∞n=1[(−1)^(n−1)].[(x^n)/(n)] converges if |x| < 1
"\\sum _{n=1}^{\\infty \\:}\\left(-1^{n-1}\\right)x^n\\frac{1}{n}"
"\\mathrm{If\\:there\\:exists\\:an\\:}N\\mathrm{\\:so\\:that\\:for\\:all\\:}n\\ge N,\\:\\quad a_n\\ne 0\\mathrm{\\:and\\:}\\lim _{n\\to \\infty }|\\frac{a_{n+1}}{a_n}|=L:"
"\\mathrm{If\\:}L<1\\mathrm{,\\:then\\:}\\sum a_n\\mathrm{\\:converges}"
"\\mathrm{If\\:}L>1\\mathrm{,\\:then\\:}\\sum a_n\\mathrm{\\:diverges}"
"\\mathrm{If\\:}L=1\\mathrm{,\\:then\\:the\\:test\\:is\\:inconclusive}"
"\\left|\\frac{a_{n+1}}{a_n}\\right|=\\left|\\frac{\\left(-1^{\\left(n+1\\right)-1}\\right)x^{\\left(n+1\\right)}\\frac{1}{\\left(n+1\\right)}}{\\left(-1^{n-1}\\right)x^n\\frac{1}{n}}\\right|"
"\\lim _{n\\to \\infty \\:}\\left(\\left|\\frac{\\left(-1^{\\left(n+1\\right)-1}\\right)x^{\\left(n+1\\right)}\\frac{1}{\\left(n+1\\right)}}{\\left(-1^{n-1}\\right)x^n\\frac{1}{n}}\\right|\\right)"
"\\frac{\\left(-1^{\\left(n+1\\right)-1}\\right)x^{n+1}\\frac{1}{n+1}}{\\left(-1^{n-1}\\right)x^n\\frac{1}{n}}"
"\\frac{-1^{n+1-1}x^{n+1}\\frac{1}{n+1}}{-1^{n-1}x^n\\frac{1}{n}}"
"\\frac{-\\frac{1}{n+1}x^{n+1}}{-1^{n-1}\\cdot \\frac{1}{n}x^n}"
"\\frac{x^{n+1}\\frac{1}{n+1}}{1^{n-1}x^n\\frac{1}{n}}"
"\\frac{\\frac{x^{n+1}}{n+1}}{1^{n-1}\\cdot \\frac{1}{n}x^n}"
"\\frac{x^{n+1}}{\\frac{x^n\\left(n+1\\right)}{n}}"
"\\frac{x^{n+1}n}{\\left(n+1\\right)x^n}"
"\\frac{nx}{n+1}"
"\\lim _{n\\to \\infty \\:}\\left(\\left|\\frac{nx}{n+1}\\right|\\right)"
"=\\left|x\\right|\\cdot \\lim _{n\\to \\infty \\:}\\left(\\left|\\frac{n}{n+1}\\right|\\right)"
"\\left|x\\right|\\cdot \\:1"
"-1<x<1"
"\\mathrm{Check\\:convergence\\:for\\:}L=1"
"\\lim _{n\\to \\infty \\:}\\left(\\frac{1}{n}\\right)=0"
"\\mathrm{Therefore,\\:the\\:convergence\\:interval\\:of\\:}\\sum _{n=1}^{\\infty \\:}\\left(-1^{n-1}\\right)x^n\\frac{1}{n}\\mathrm{\\:is\\:} -1\\le \\:x<1"
Comments
Leave a comment