Question #161771

Show that ∞n=1[(−1)^(n−1)].[(x^n)/(n)] converges if |x| < 1


1
Expert's answer
2021-02-24T06:40:07-0500

n=1(1n1)xn1n\sum _{n=1}^{\infty \:}\left(-1^{n-1}\right)x^n\frac{1}{n}

IfthereexistsanNsothatforallnN,an0andlimnan+1an=L:\mathrm{If\:there\:exists\:an\:}N\mathrm{\:so\:that\:for\:all\:}n\ge N,\:\quad a_n\ne 0\mathrm{\:and\:}\lim _{n\to \infty }|\frac{a_{n+1}}{a_n}|=L:

IfL<1,thenanconverges\mathrm{If\:}L<1\mathrm{,\:then\:}\sum a_n\mathrm{\:converges}

IfL>1,thenandiverges\mathrm{If\:}L>1\mathrm{,\:then\:}\sum a_n\mathrm{\:diverges}

IfL=1,thenthetestisinconclusive\mathrm{If\:}L=1\mathrm{,\:then\:the\:test\:is\:inconclusive}

an+1an=(1(n+1)1)x(n+1)1(n+1)(1n1)xn1n\left|\frac{a_{n+1}}{a_n}\right|=\left|\frac{\left(-1^{\left(n+1\right)-1}\right)x^{\left(n+1\right)}\frac{1}{\left(n+1\right)}}{\left(-1^{n-1}\right)x^n\frac{1}{n}}\right|

limn((1(n+1)1)x(n+1)1(n+1)(1n1)xn1n)\lim _{n\to \infty \:}\left(\left|\frac{\left(-1^{\left(n+1\right)-1}\right)x^{\left(n+1\right)}\frac{1}{\left(n+1\right)}}{\left(-1^{n-1}\right)x^n\frac{1}{n}}\right|\right)

(1(n+1)1)xn+11n+1(1n1)xn1n\frac{\left(-1^{\left(n+1\right)-1}\right)x^{n+1}\frac{1}{n+1}}{\left(-1^{n-1}\right)x^n\frac{1}{n}}

1n+11xn+11n+11n1xn1n\frac{-1^{n+1-1}x^{n+1}\frac{1}{n+1}}{-1^{n-1}x^n\frac{1}{n}}

1n+1xn+11n11nxn\frac{-\frac{1}{n+1}x^{n+1}}{-1^{n-1}\cdot \frac{1}{n}x^n}

xn+11n+11n1xn1n\frac{x^{n+1}\frac{1}{n+1}}{1^{n-1}x^n\frac{1}{n}}

xn+1n+11n11nxn\frac{\frac{x^{n+1}}{n+1}}{1^{n-1}\cdot \frac{1}{n}x^n}

xn+1xn(n+1)n\frac{x^{n+1}}{\frac{x^n\left(n+1\right)}{n}}

xn+1n(n+1)xn\frac{x^{n+1}n}{\left(n+1\right)x^n}

nxn+1\frac{nx}{n+1}

limn(nxn+1)\lim _{n\to \infty \:}\left(\left|\frac{nx}{n+1}\right|\right)

=xlimn(nn+1)=\left|x\right|\cdot \lim _{n\to \infty \:}\left(\left|\frac{n}{n+1}\right|\right)

x1\left|x\right|\cdot \:1

1<x<1-1<x<1

CheckconvergenceforL=1\mathrm{Check\:convergence\:for\:}L=1

limn(1n)=0\lim _{n\to \infty \:}\left(\frac{1}{n}\right)=0

Therefore,theconvergenceintervalofn=1(1n1)xn1nis1x<1\mathrm{Therefore,\:the\:convergence\:interval\:of\:}\sum _{n=1}^{\infty \:}\left(-1^{n-1}\right)x^n\frac{1}{n}\mathrm{\:is\:} -1\le \:x<1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS