∑n=1∞(−1n−1)xnn1
IfthereexistsanNsothatforalln≥N,an=0andlimn→∞∣anan+1∣=L:
IfL<1,then∑anconverges
IfL>1,then∑andiverges
IfL=1,thenthetestisinconclusive
∣∣anan+1∣∣=∣∣(−1n−1)xnn1(−1(n+1)−1)x(n+1)(n+1)1∣∣
limn→∞(∣∣(−1n−1)xnn1(−1(n+1)−1)x(n+1)(n+1)1∣∣)
(−1n−1)xnn1(−1(n+1)−1)xn+1n+11
−1n−1xnn1−1n+1−1xn+1n+11
−1n−1⋅n1xn−n+11xn+1
1n−1xnn1xn+1n+11
1n−1⋅n1xnn+1xn+1
nxn(n+1)xn+1
(n+1)xnxn+1n
n+1nx
limn→∞(∣∣n+1nx∣∣)
=∣x∣⋅limn→∞(∣∣n+1n∣∣)
∣x∣⋅1
−1<x<1
CheckconvergenceforL=1
limn→∞(n1)=0
Therefore,theconvergenceintervalof∑n=1∞(−1n−1)xnn1is−1≤x<1
Comments