Evaluate the ∫√5xdx
The indefinite integral is evaluated as,
∫5xdx=5∫xdx\int\sqrt{5x}dx=\sqrt{5}\int\sqrt{x}dx∫5xdx=5∫xdx
Use formula, ∫xndx=xn+1n+1\int x^ndx=\frac{x^{n+1}}{n+1}∫xndx=n+1xn+1 to find the integral. Here, n=12n=\frac{1}{2}n=21
So, the integral is,
∫5xdx=5[x12+112+1]\int\sqrt{5x}dx=\sqrt{5}[\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}]∫5xdx=5[21+1x21+1]
=5[x3232]=\sqrt{5}[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}]=5[23x23]
=253x32=\frac{2\sqrt{5}}{3}x^{\frac{3}{2}}=325x23
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments