Evaluate the ∫√5xdx
The indefinite integral is evaluated as,
"\\int\\sqrt{5x}dx=\\sqrt{5}\\int\\sqrt{x}dx"
Use formula, "\\int x^ndx=\\frac{x^{n+1}}{n+1}" to find the integral. Here, "n=\\frac{1}{2}"
So, the integral is,
"\\int\\sqrt{5x}dx=\\sqrt{5}[\\frac{x^{\\frac{1}{2}+1}}{\\frac{1}{2}+1}]"
"=\\sqrt{5}[\\frac{x^{\\frac{3}{2}}}{\\frac{3}{2}}]"
"=\\frac{2\\sqrt{5}}{3}x^{\\frac{3}{2}}"
Comments
Leave a comment