Question #162015

Evaluate the ∫√5xdx


1
Expert's answer
2021-02-24T12:44:16-0500

The indefinite integral is evaluated as,


5xdx=5xdx\int\sqrt{5x}dx=\sqrt{5}\int\sqrt{x}dx


Use formula, xndx=xn+1n+1\int x^ndx=\frac{x^{n+1}}{n+1} to find the integral. Here, n=12n=\frac{1}{2}


So, the integral is,


5xdx=5[x12+112+1]\int\sqrt{5x}dx=\sqrt{5}[\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}]


=5[x3232]=\sqrt{5}[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}]


=253x32=\frac{2\sqrt{5}}{3}x^{\frac{3}{2}}


Therefore, the indefinite integral is 5xdx=253x32\int\sqrt{5x}dx=\frac{2\sqrt{5}}{3}x^{\frac{3}{2}}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS