Evaluate the ∫dx/5-3x
Solution.
Make a replacement:
t=5−3x,t=5-3x,t=5−3x, from here 3x=5−t,x=−13t+53.3x=5-t, x=-\frac{1}{3}t+\frac{5}{3}.3x=5−t,x=−31t+35.
Then dx=d(−13t+53)=−13dt.dx=d(-\frac{1}{3}t+\frac{5}{3})=-\frac{1}{3}dt.dx=d(−31t+35)=−31dt.
We will have
∫−13dtt=−13∫dtt=−13ln∣t∣+C=−13ln∣5−3x∣+C.\int{\frac{-\frac{1}{3}dt}{t}}= -\frac{1}{3}\int{\frac{dt}{t}}= -\frac{1}{3}\ln{|t|}+C= -\frac{1}{3}\ln{|{5-3x}|}+C.∫t−31dt=−31∫tdt=−31ln∣t∣+C=−31ln∣5−3x∣+C.
Answer.
∫dx5−3x=−13ln∣5−3x∣+C\int{\frac{dx}{5-3x}}= -\frac{1}{3}\ln{|5-3x|}+C∫5−3xdx=−31ln∣5−3x∣+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments