Evaluate the ∫dx/5-3x
Solution.
Make a replacement:
"t=5-3x," from here "3x=5-t,\nx=-\\frac{1}{3}t+\\frac{5}{3}."
Then "dx=d(-\\frac{1}{3}t+\\frac{5}{3})=-\\frac{1}{3}dt."
We will have
"\\int{\\frac{-\\frac{1}{3}dt}{t}}=\n-\\frac{1}{3}\\int{\\frac{dt}{t}}= \n-\\frac{1}{3}\\ln{|t|}+C=\n-\\frac{1}{3}\\ln{|{5-3x}|}+C."
Answer.
"\\int{\\frac{dx}{5-3x}}=\n-\\frac{1}{3}\\ln{|5-3x|}+C"
Comments
Leave a comment