Question #162017

Evaluate the ∫dx/5-3x


1
Expert's answer
2021-02-16T11:27:28-0500

Solution.

Make a replacement:

t=53x,t=5-3x, from here 3x=5t,x=13t+53.3x=5-t, x=-\frac{1}{3}t+\frac{5}{3}.

Then dx=d(13t+53)=13dt.dx=d(-\frac{1}{3}t+\frac{5}{3})=-\frac{1}{3}dt.

We will have

13dtt=13dtt=13lnt+C=13ln53x+C.\int{\frac{-\frac{1}{3}dt}{t}}= -\frac{1}{3}\int{\frac{dt}{t}}= -\frac{1}{3}\ln{|t|}+C= -\frac{1}{3}\ln{|{5-3x}|}+C.

Answer.

dx53x=13ln53x+C\int{\frac{dx}{5-3x}}= -\frac{1}{3}\ln{|5-3x|}+C





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS