Evaluate the integral of z+2/z²+4z dz from -3 to 2
∫−32z+2z2+4zdz=∫−32z+2z(z+4)dz==∫−32z+−0.5z+4+0.5zdz=0.5z2−0.5ln(∣z+4∣)+0.5ln(∣z∣)∣−32=−2.5−ln6+ln2−ln3=−2.5−ln3\int\limits_{-3}^2 z+\frac{2}{z^2+4z}dz=\int\limits_{-3}^2 z+\frac{2}{z(z+4)}dz=\\ =\int\limits_{-3}^2 z+\frac{-0.5}{z+4}+\frac{0.5}{z}dz=\\ 0.5z^2-0.5\ln{(|z+4|)}+0.5\ln(|z|)|_{-3}^2=\\ -2.5-\ln{\sqrt{6}}+\ln{\sqrt{2}}-\ln{\sqrt{3}}=-2.5-\ln3−3∫2z+z2+4z2dz=−3∫2z+z(z+4)2dz==−3∫2z+z+4−0.5+z0.5dz=0.5z2−0.5ln(∣z+4∣)+0.5ln(∣z∣)∣−32=−2.5−ln6+ln2−ln3=−2.5−ln3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment