Question #162040

Evaluate the integral of √x dx/1+x√x


1
Expert's answer
2021-02-24T12:38:52-0500

xdx1+xx\int\frac{\sqrt xdx}{1+x\sqrt x}

Solution:

I=xdx1+xxI=\int\frac{\sqrt xdx}{1+x\sqrt x}

x=t;\sqrt x=t; x=t2;x=t^2; dx=2tdtdx=2tdt .

I=2t2dt1+t3I=\int \frac{2t^2dt}{1+t^3}

2t2dt1+t3=2t2(t+1)(t2t+1)=2t2(t+1)((t12)2+34)\frac{2t^2dt}{1+t^3}=\frac{2t^2}{(t+1)(t^2-t+1)}=\frac{2t^2}{(t+1)((t-\frac12)^2+\frac34)}

Expand the fraction:

2t2(t+1)((t12)2+34)=23(t+1)+43(t12)(t12)2+34\frac{2t^2}{(t+1)((t-\frac12)^2+\frac34)}=\frac{2}{3(t+1)}+\frac{\frac43(t-\frac12)}{(t-\frac12)^2+\frac34}

I=(23(t+1)+43(t12)(t12)2+34)dt=I=\int (\frac{2}{3(t+1)}+\frac{\frac43(t-\frac12)}{(t-\frac12)^2+\frac34})dt=

2dt3(t+1)+23d(t12)2(t12)2+34=\int \frac{2dt}{3(t+1)}+\int\frac{\frac23d(t-\frac12)^2}{(t-\frac12)^2+\frac34}=

23(lnt+1+ln((t12)2+34))+C=\frac23(\ln{|t+1|}+\ln{{((t-\frac12)^2+\frac34})})+C=

23ln1+t3+C=23ln1+xx+C=ln(1+xx)23+C\frac23\ln{|1+t^3|}+C=\frac23\ln{|1+x\sqrt x|}+C=\ln{(1+x\sqrt x)^{\frac23}}+C

Answer: xdx1+xx=ln(1+xx)23+C\int\frac{\sqrt xdx}{1+x\sqrt x}=\ln{(1+x\sqrt x)^{\frac23}}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS