∫ x d x 1 + x x \int\frac{\sqrt xdx}{1+x\sqrt x} ∫ 1 + x x x d x
Solution:
I = ∫ x d x 1 + x x I=\int\frac{\sqrt xdx}{1+x\sqrt x} I = ∫ 1 + x x x d x
x = t ; \sqrt x=t; x = t ; x = t 2 ; x=t^2; x = t 2 ; d x = 2 t d t dx=2tdt d x = 2 t d t .
I = ∫ 2 t 2 d t 1 + t 3 I=\int \frac{2t^2dt}{1+t^3} I = ∫ 1 + t 3 2 t 2 d t
2 t 2 d t 1 + t 3 = 2 t 2 ( t + 1 ) ( t 2 − t + 1 ) = 2 t 2 ( t + 1 ) ( ( t − 1 2 ) 2 + 3 4 ) \frac{2t^2dt}{1+t^3}=\frac{2t^2}{(t+1)(t^2-t+1)}=\frac{2t^2}{(t+1)((t-\frac12)^2+\frac34)} 1 + t 3 2 t 2 d t = ( t + 1 ) ( t 2 − t + 1 ) 2 t 2 = ( t + 1 ) (( t − 2 1 ) 2 + 4 3 ) 2 t 2
Expand the fraction:
2 t 2 ( t + 1 ) ( ( t − 1 2 ) 2 + 3 4 ) = 2 3 ( t + 1 ) + 4 3 ( t − 1 2 ) ( t − 1 2 ) 2 + 3 4 \frac{2t^2}{(t+1)((t-\frac12)^2+\frac34)}=\frac{2}{3(t+1)}+\frac{\frac43(t-\frac12)}{(t-\frac12)^2+\frac34} ( t + 1 ) (( t − 2 1 ) 2 + 4 3 ) 2 t 2 = 3 ( t + 1 ) 2 + ( t − 2 1 ) 2 + 4 3 3 4 ( t − 2 1 )
I = ∫ ( 2 3 ( t + 1 ) + 4 3 ( t − 1 2 ) ( t − 1 2 ) 2 + 3 4 ) d t = I=\int (\frac{2}{3(t+1)}+\frac{\frac43(t-\frac12)}{(t-\frac12)^2+\frac34})dt= I = ∫ ( 3 ( t + 1 ) 2 + ( t − 2 1 ) 2 + 4 3 3 4 ( t − 2 1 ) ) d t =
∫ 2 d t 3 ( t + 1 ) + ∫ 2 3 d ( t − 1 2 ) 2 ( t − 1 2 ) 2 + 3 4 = \int \frac{2dt}{3(t+1)}+\int\frac{\frac23d(t-\frac12)^2}{(t-\frac12)^2+\frac34}= ∫ 3 ( t + 1 ) 2 d t + ∫ ( t − 2 1 ) 2 + 4 3 3 2 d ( t − 2 1 ) 2 =
2 3 ( ln ∣ t + 1 ∣ + ln ( ( t − 1 2 ) 2 + 3 4 ) ) + C = \frac23(\ln{|t+1|}+\ln{{((t-\frac12)^2+\frac34})})+C= 3 2 ( ln ∣ t + 1∣ + ln (( t − 2 1 ) 2 + 4 3 ) ) + C =
2 3 ln ∣ 1 + t 3 ∣ + C = 2 3 ln ∣ 1 + x x ∣ + C = ln ( 1 + x x ) 2 3 + C \frac23\ln{|1+t^3|}+C=\frac23\ln{|1+x\sqrt x|}+C=\ln{(1+x\sqrt x)^{\frac23}}+C 3 2 ln ∣1 + t 3 ∣ + C = 3 2 ln ∣1 + x x ∣ + C = ln ( 1 + x x ) 3 2 + C
Answer: ∫ x d x 1 + x x = ln ( 1 + x x ) 2 3 + C \int\frac{\sqrt xdx}{1+x\sqrt x}=\ln{(1+x\sqrt x)^{\frac23}}+C ∫ 1 + x x x d x = ln ( 1 + x x ) 3 2 + C
Comments