Evaluate the integral of √x dx/1+x√x
"\\int\\frac{\\sqrt xdx}{1+x\\sqrt x}"
Solution:
"I=\\int\\frac{\\sqrt xdx}{1+x\\sqrt x}"
"\\sqrt x=t;" "x=t^2;" "dx=2tdt" .
"I=\\int \\frac{2t^2dt}{1+t^3}"
"\\frac{2t^2dt}{1+t^3}=\\frac{2t^2}{(t+1)(t^2-t+1)}=\\frac{2t^2}{(t+1)((t-\\frac12)^2+\\frac34)}"
Expand the fraction:
"\\frac{2t^2}{(t+1)((t-\\frac12)^2+\\frac34)}=\\frac{2}{3(t+1)}+\\frac{\\frac43(t-\\frac12)}{(t-\\frac12)^2+\\frac34}"
"I=\\int (\\frac{2}{3(t+1)}+\\frac{\\frac43(t-\\frac12)}{(t-\\frac12)^2+\\frac34})dt="
"\\int \\frac{2dt}{3(t+1)}+\\int\\frac{\\frac23d(t-\\frac12)^2}{(t-\\frac12)^2+\\frac34}="
"\\frac23(\\ln{|t+1|}+\\ln{{((t-\\frac12)^2+\\frac34})})+C="
"\\frac23\\ln{|1+t^3|}+C=\\frac23\\ln{|1+x\\sqrt x|}+C=\\ln{(1+x\\sqrt x)^{\\frac23}}+C"
Answer: "\\int\\frac{\\sqrt xdx}{1+x\\sqrt x}=\\ln{(1+x\\sqrt x)^{\\frac23}}+C"
Comments
Leave a comment