Let I = ∫ cos x sin x + sin x 3 d x Substitute u = sin x I = ∫ d ( sin x ) sin x + sin x 3 = ∫ d u u + u 3 Substitute u = v 6 I = ∫ 6 v 5 v 3 + v 2 d v = ∫ 6 v 3 v + 1 d v = ∫ ( 6 v 2 − 6 v + 6 − 6 v + 1 ) d v = 2 v 3 − 3 v 2 + 6 v − 6 ln ( v + 1 ) + C = 2 u − 3 u 3 + 6 u 6 − 6 ln ( u 6 + 1 ) + C = 2 sin x − 3 sin x 3 + 6 sin x 6 − 6 ln ( sin x 6 + 1 ) + C ∴ ∫ cos x sin x + sin x 3 d x = 2 sin x − 3 sin x 3 + 6 sin x 6 − 6 ln ( sin x 6 + 1 ) + C \displaystyle
\textsf{Let}\, I =\int \frac{\cos{x}}{\sqrt{\sin{x}} + \sqrt[3]{\sin{x}}}\, \mathrm{d}x\\
\textsf{Substitute}\, u = \sin{x} \\
\begin{aligned}
I &=\int \frac{\mathrm{d}(\sin{x})}{\sqrt{\sin{x}} + \sqrt[3]{\sin{x}}} \\
&=\int \frac{\mathrm{d}u}{\sqrt{u} + \sqrt[3]{u}}
\end{aligned}\\
\textsf{Substitute}\, u = v^6 \\
\begin{aligned}
I &=\int \frac{6v^5}{v^3 + v^2} \, \mathrm{d}v\\
&=\int \frac{6v^3}{v + 1} \, \mathrm{d}v\\
&=\int \left(6v^2 - 6v + 6 - \frac{6}{v + 1}\right) \mathrm{d}v\\
&= 2v^3 - 3v^2 + 6v - 6\ln(v + 1) + C\\
&= 2\sqrt{u} - 3\sqrt[3]{u} + 6\sqrt[6]{u} - 6\ln(\sqrt[6]{u} + 1) + C\\
&= 2\sqrt{\sin{x}} - 3\sqrt[3]{\sin{x}} + 6\sqrt[6]{\sin{x}} - 6\ln(\sqrt[6]{\sin{x}} + 1) + C
\end{aligned}\\
\therefore \int \frac{\cos{x}}{\sqrt{\sin{x}} + \sqrt[3]{\sin{x}}}\, \mathrm{d}x \\
= 2\sqrt{\sin{x}} - 3\sqrt[3]{\sin{x}} + 6\sqrt[6]{\sin{x}} - 6\ln(\sqrt[6]{\sin{x}} + 1) + C Let I = ∫ sin x + 3 sin x cos x d x Substitute u = sin x I = ∫ sin x + 3 sin x d ( sin x ) = ∫ u + 3 u d u Substitute u = v 6 I = ∫ v 3 + v 2 6 v 5 d v = ∫ v + 1 6 v 3 d v = ∫ ( 6 v 2 − 6 v + 6 − v + 1 6 ) d v = 2 v 3 − 3 v 2 + 6 v − 6 ln ( v + 1 ) + C = 2 u − 3 3 u + 6 6 u − 6 ln ( 6 u + 1 ) + C = 2 sin x − 3 3 sin x + 6 6 sin x − 6 ln ( 6 sin x + 1 ) + C ∴ ∫ sin x + 3 sin x cos x d x = 2 sin x − 3 3 sin x + 6 6 sin x − 6 ln ( 6 sin x + 1 ) + C
Comments