LetI=∫sinx+3sinxcosxdxSubstituteu=sinxI=∫sinx+3sinxd(sinx)=∫u+3uduSubstituteu=v6I=∫v3+v26v5dv=∫v+16v3dv=∫(6v2−6v+6−v+16)dv=2v3−3v2+6v−6ln(v+1)+C=2u−33u+66u−6ln(6u+1)+C=2sinx−33sinx+66sinx−6ln(6sinx+1)+C∴∫sinx+3sinxcosxdx=2sinx−33sinx+66sinx−6ln(6sinx+1)+C
Comments