"\\displaystyle\n\\textsf{Let}\\, I =\\int \\frac{\\cos{x}}{\\sqrt{\\sin{x}} + \\sqrt[3]{\\sin{x}}}\\, \\mathrm{d}x\\\\\n\n\\textsf{Substitute}\\, u = \\sin{x} \\\\\n\n\\begin{aligned}\nI &=\\int \\frac{\\mathrm{d}(\\sin{x})}{\\sqrt{\\sin{x}} + \\sqrt[3]{\\sin{x}}} \\\\\n&=\\int \\frac{\\mathrm{d}u}{\\sqrt{u} + \\sqrt[3]{u}}\n\\end{aligned}\\\\\n\n\\textsf{Substitute}\\, u = v^6 \\\\\n\n\\begin{aligned}\nI &=\\int \\frac{6v^5}{v^3 + v^2} \\, \\mathrm{d}v\\\\\n&=\\int \\frac{6v^3}{v + 1} \\, \\mathrm{d}v\\\\\n&=\\int \\left(6v^2 - 6v + 6 - \\frac{6}{v + 1}\\right) \\mathrm{d}v\\\\\n&= 2v^3 - 3v^2 + 6v - 6\\ln(v + 1) + C\\\\\n&= 2\\sqrt{u} - 3\\sqrt[3]{u} + 6\\sqrt[6]{u} - 6\\ln(\\sqrt[6]{u} + 1) + C\\\\\n&= 2\\sqrt{\\sin{x}} - 3\\sqrt[3]{\\sin{x}} + 6\\sqrt[6]{\\sin{x}} - 6\\ln(\\sqrt[6]{\\sin{x}} + 1) + C\n\\end{aligned}\\\\\n\n\\therefore \\int \\frac{\\cos{x}}{\\sqrt{\\sin{x}} + \\sqrt[3]{\\sin{x}}}\\, \\mathrm{d}x \\\\\n= 2\\sqrt{\\sin{x}} - 3\\sqrt[3]{\\sin{x}} + 6\\sqrt[6]{\\sin{x}} - 6\\ln(\\sqrt[6]{\\sin{x}} + 1) + C"
Comments
Leave a comment