"\\int_{-1}^1 \\frac{dx}{\\sqrt{x^2+2x+2}}=\\int_{-1}^1 \\frac{dx}{\\sqrt{(x+1)^2+1}} =\\\\ \n=[x+1=t, dx=dt, x=-1\\implies t=0; x=1 \\implies t=2] =\\\\\n=\\int_0^2 \\frac{dt}{\\sqrt{t^2+1}}=(\\ln |t+\\sqrt{t^2+1}|)|^2_0= \\\\\n=\\ln|2+\\sqrt{2^2+1}|-\\ln|0+\\sqrt{0^2+1}|=\\ln(2+\\sqrt{5})"
Comments
Leave a comment