Question #139773
Evaluate the integral ∫_(-1)^1▒1/√(x^2+2x+2) dx
1
Expert's answer
2020-10-27T18:27:15-0400

11dxx2+2x+2=11dx(x+1)2+1==[x+1=t,dx=dt,x=1    t=0;x=1    t=2]==02dtt2+1=(lnt+t2+1)02==ln2+22+1ln0+02+1=ln(2+5)\int_{-1}^1 \frac{dx}{\sqrt{x^2+2x+2}}=\int_{-1}^1 \frac{dx}{\sqrt{(x+1)^2+1}} =\\ =[x+1=t, dx=dt, x=-1\implies t=0; x=1 \implies t=2] =\\ =\int_0^2 \frac{dt}{\sqrt{t^2+1}}=(\ln |t+\sqrt{t^2+1}|)|^2_0= \\ =\ln|2+\sqrt{2^2+1}|-\ln|0+\sqrt{0^2+1}|=\ln(2+\sqrt{5})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS