∫−11dxx2+2x+2=∫−11dx(x+1)2+1==[x+1=t,dx=dt,x=−1 ⟹ t=0;x=1 ⟹ t=2]==∫02dtt2+1=(ln∣t+t2+1∣)∣02==ln∣2+22+1∣−ln∣0+02+1∣=ln(2+5)\int_{-1}^1 \frac{dx}{\sqrt{x^2+2x+2}}=\int_{-1}^1 \frac{dx}{\sqrt{(x+1)^2+1}} =\\ =[x+1=t, dx=dt, x=-1\implies t=0; x=1 \implies t=2] =\\ =\int_0^2 \frac{dt}{\sqrt{t^2+1}}=(\ln |t+\sqrt{t^2+1}|)|^2_0= \\ =\ln|2+\sqrt{2^2+1}|-\ln|0+\sqrt{0^2+1}|=\ln(2+\sqrt{5})∫−11x2+2x+2dx=∫−11(x+1)2+1dx==[x+1=t,dx=dt,x=−1⟹t=0;x=1⟹t=2]==∫02t2+1dt=(ln∣t+t2+1∣)∣02==ln∣2+22+1∣−ln∣0+02+1∣=ln(2+5)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments