Question #139776
Evaluate the integral ∫▒(〖cos〗^5 (lnx) 〖sin〗^2 (lnx))/x dx
1
Expert's answer
2020-10-26T19:11:39-0400

cos5(lnx)sin2(lnx)xdx=cos5(lnx)sin2(lnx)d(lnx)=cos(lnx)cos4(lnx)sin2(lnx)d(lnx)=\int \frac{cos^5(lnx)sin^2(lnx)}{x}dx=\int cos^5(lnx)sin^2(lnx)d(lnx)=\int cos(lnx)cos^4(lnx)sin^2(lnx)d(lnx)=

=cos4(lnx)sin2(lnx)d(sin(lnx))=t=sin(lnx),cos2(lnx)=1sin2(lnx)==\int cos^4(lnx)sin^2(lnx)d(sin(lnx))=|t=sin(lnx), cos^2(lnx)=1-sin^2(lnx)|=

=(1t2)2t2dt=(12t2+t4)t2dt=(t62t4+t2)dt=17t725t5+13t3+C==\int (1-t^2)^2t^2dt=\int(1-2t^2+t^4)t^2dt=\int(t^6-2t^4+t^2)dt=\frac17t^7-\frac25t^5+\frac13t^3+C= =17sin7(lnx)25sin5(lnx)+13sin3(lnx)+C=\frac17sin^7(lnx)-\frac25sin^5(lnx)+\frac13sin^3(lnx)+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS