Answer to Question #139776 in Calculus for Moel Tariburu

Question #139776
Evaluate the integral ∫▒(〖cos〗^5 (lnx) 〖sin〗^2 (lnx))/x dx
1
Expert's answer
2020-10-26T19:11:39-0400

"\\int \\frac{cos^5(lnx)sin^2(lnx)}{x}dx=\\int cos^5(lnx)sin^2(lnx)d(lnx)=\\int cos(lnx)cos^4(lnx)sin^2(lnx)d(lnx)="

"=\\int cos^4(lnx)sin^2(lnx)d(sin(lnx))=|t=sin(lnx), cos^2(lnx)=1-sin^2(lnx)|="

"=\\int (1-t^2)^2t^2dt=\\int(1-2t^2+t^4)t^2dt=\\int(t^6-2t^4+t^2)dt=\\frac17t^7-\\frac25t^5+\\frac13t^3+C=" "=\\frac17sin^7(lnx)-\\frac25sin^5(lnx)+\\frac13sin^3(lnx)+C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS