"\\displaystyle\\textsf{Integration by Algebraic Substitution}\\\\\n\n\\textrm{Explanation:}\\\\\n\n\\textsf{For an Integral}\\, S\\\\\n\nS = \\int f(x) \\, \\mathrm{d}x\\\\\n\n\\textsf{make the algebraic substitution}\\\\x = g(u)\\\\\n\n\ng'(u) \\mathrm{d}u = \\mathrm{d}x\\\\\n\n\n\\therefore S = \\int f(g(u)) g'(u)\\mathrm{d}u \\\\\n\n\n\\textbf{\\textsf{Example}}\\\\\n\n\\textsf{Integrate}\\, \\cos(r^2) r \\mathrm{d}r\\\\\n\nI = \\int \\cos(r^2) r \\mathrm{d}r\\\\\n\n\\textsf{Let}\\, u = r^2, \\mathrm{d}u = 2r \\mathrm{d}r \\\\\n\n\\begin{aligned}\nI &= \\int \\frac{\\cos(u)}{2r} r \\mathrm{d}u \\\\&= \\int \\frac{\\cos(u)}{2}du \\\\&= \\frac{\\sin(u)}{2} + C \\\\&= \\frac{\\sin(r^2)}{2} + C \n\\end{aligned}"
Comments
Leave a comment