∫141(x−3)13dx=[ u=x−34→1 du=dx1→−2 ]==∫−211u13du=∫−21u−13du=u2323∣−21==32(1−(−2)23)=32−323\int_1^4 \frac{1}{(x-3)^{\frac{1}{3}}}dx = \left[ \begin{array}{} u = x -3 & 4 \to1\\ du = dx & 1 \to -2 \end{array} \right]=\\ =\int_{-2}^1 \frac{1}{u^{\frac{1}{3}}}du = \int_{-2}^1 u^{-\frac{1}{3}}du = \frac{u^{\frac{2}{3}}}{\frac{2}{3}}|_{-2}^1 = \\ =\frac{3}{2}(1-(-2)^{\frac{2}{3}}) = \frac{3}{2} - \frac{3}{\sqrt[3]{2}}∫14(x−3)311dx=[ u=x−3 du=dx4→11→−2 ]==∫−21u311du=∫−21u−31du=32u32∣−21==23(1−(−2)32)=23−323
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments