V=∬Dzdydx=∬D(6−x−y)dydxV=\iint_D zdydx=\iint_D (6-x-y)dydxV=∬Dzdydx=∬D(6−x−y)dydx
D:0≤x≤6,0≤y≤6−xD:0\leq x\leq 6, 0\leq y\leq 6-xD:0≤x≤6,0≤y≤6−x
V=∫06∫06−x(6−x−y)dydx=∫06(6y−xy−y22)∣06−xdx=V=\int_0^6 \int_0^{6-x}(6-x-y)dydx =\int _0^6 (6y-xy-\frac{y^2}{2})|_0^{6-x}dx=V=∫06∫06−x(6−x−y)dydx=∫06(6y−xy−2y2)∣06−xdx=
=∫06(6⋅(6−x)−x⋅(6−x)−(6−x)22)dx=∫06((6−x)2−(6−x)22)dx==\int_0 ^6 (6\cdot(6-x)-x\cdot(6-x)-\frac{(6-x)^2}{2})dx=\int_0^6((6-x)^2-\frac{(6-x)^2}{2})dx==∫06(6⋅(6−x)−x⋅(6−x)−2(6−x)2)dx=∫06((6−x)2−2(6−x)2)dx=
=12∫06(6−x)2dx=12∫06(x−6)2d(x−6)=(12⋅(x−6)33)∣06==\frac{1}{2} \int_0^6 (6-x)^2dx=\frac{1}{2} \int_0^6 (x-6)^2d(x-6)=(\frac{1}{2}\cdot \frac{(x-6)^3}{3} )|_0^6 ==21∫06(6−x)2dx=21∫06(x−6)2d(x−6)=(21⋅3(x−6)3)∣06=
=(6−6)36−(0−6)36=36=\frac{(6-6)^3}{6}-\frac{(0-6)^3}{6}=36=6(6−6)3−6(0−6)3=36
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Both the limits of y to be from 0 to 6-x and the limits of x to be from 0 to 6 describe the triangle, the base of the solid considered in this question.
Why did you choose the limits of y to be from 0 to 6-x instead of 0 to 6 as shown in the graph?
Comments
Both the limits of y to be from 0 to 6-x and the limits of x to be from 0 to 6 describe the triangle, the base of the solid considered in this question.
Why did you choose the limits of y to be from 0 to 6-x instead of 0 to 6 as shown in the graph?
Leave a comment