Answer to Question #139337 in Calculus for Promise Omiponle

Question #139337
Find the volume of the solid bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 6.
1
Expert's answer
2020-10-27T18:43:07-0400

V=Dzdydx=D(6xy)dydxV=\iint_D zdydx=\iint_D (6-x-y)dydx

D:0x6,0y6xD:0\leq x\leq 6, 0\leq y\leq 6-x


V=0606x(6xy)dydx=06(6yxyy22)06xdx=V=\int_0^6 \int_0^{6-x}(6-x-y)dydx =\int _0^6 (6y-xy-\frac{y^2}{2})|_0^{6-x}dx=

=06(6(6x)x(6x)(6x)22)dx=06((6x)2(6x)22)dx==\int_0 ^6 (6\cdot(6-x)-x\cdot(6-x)-\frac{(6-x)^2}{2})dx=\int_0^6((6-x)^2-\frac{(6-x)^2}{2})dx=

=1206(6x)2dx=1206(x6)2d(x6)=(12(x6)33)06==\frac{1}{2} \int_0^6 (6-x)^2dx=\frac{1}{2} \int_0^6 (x-6)^2d(x-6)=(\frac{1}{2}\cdot \frac{(x-6)^3}{3} )|_0^6 =

=(66)36(06)36=36=\frac{(6-6)^3}{6}-\frac{(0-6)^3}{6}=36


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
11.04.21, 17:38

Both the limits of y to be from 0 to 6-x and the limits of x to be from 0 to 6 describe the triangle, the base of the solid considered in this question.

Youssof
05.04.21, 21:12

Why did you choose the limits of y to be from 0 to 6-x instead of 0 to 6 as shown in the graph?

Leave a comment