"V=\\iint_D zdydx=\\iint_D (6-x-y)dydx"
"D:0\\leq x\\leq 6, 0\\leq y\\leq 6-x"
"V=\\int_0^6 \\int_0^{6-x}(6-x-y)dydx =\\int _0^6 (6y-xy-\\frac{y^2}{2})|_0^{6-x}dx="
"=\\int_0 ^6 (6\\cdot(6-x)-x\\cdot(6-x)-\\frac{(6-x)^2}{2})dx=\\int_0^6((6-x)^2-\\frac{(6-x)^2}{2})dx="
"=\\frac{1}{2} \\int_0^6 (6-x)^2dx=\\frac{1}{2} \\int_0^6 (x-6)^2d(x-6)=(\\frac{1}{2}\\cdot \\frac{(x-6)^3}{3} )|_0^6 ="
"=\\frac{(6-6)^3}{6}-\\frac{(0-6)^3}{6}=36"
Comments
Both the limits of y to be from 0 to 6-x and the limits of x to be from 0 to 6 describe the triangle, the base of the solid considered in this question.
Why did you choose the limits of y to be from 0 to 6-x instead of 0 to 6 as shown in the graph?
Leave a comment