S=∬DxydA,where D:0≤x≤6,0≤y≤1−x6S=\iint_D xy dA, where ~ D: 0 \leq x \leq 6, 0 \leq y \leq 1-\frac{x}{6}S=∬DxydA,where D:0≤x≤6,0≤y≤1−6x
∬DxydA=∫06dx∫01−x6xydy=12∫06x⋅(1−x6)2dx=\iint_D xy dA=\int_0^6 dx \int_0 ^{1-\frac{x}{6}}xydy=\frac{1}{2}\int_0^6x\cdot (1-\frac{x}{6})^2dx=∬DxydA=∫06dx∫01−6xxydy=21∫06x⋅(1−6x)2dx=
=12∫06(x−x23+x336)dx=12(x22−x39+x4144)∣06==\frac{1}{2}\int_0^6(x-\frac{x^2}{3}+\frac{x^3}{36})dx=\frac{1}{2}(\frac{x^2}{2}-\frac{x^3}{9}+\frac{x^4}{144})|_0^6==21∫06(x−3x2+36x3)dx=21(2x2−9x3+144x4)∣06=
=12(18−24+9)=1.5 ⟹ S=1.5=\frac{1}{2}(18-24+9)=1.5\implies S=1.5=21(18−24+9)=1.5⟹S=1.5
Answer:S=1.5Answer:S=1.5Answer:S=1.5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments