Question #139336
Evaluate the double integral I=∫∫D xy dA where D is the triangular region with vertices (0,0),(6,0),(0,1).
1
Expert's answer
2020-10-28T17:13:46-0400

S=DxydA,where D:0x6,0y1x6S=\iint_D xy dA, where ~ D: 0 \leq x \leq 6, 0 \leq y \leq 1-\frac{x}{6}

DxydA=06dx01x6xydy=1206x(1x6)2dx=\iint_D xy dA=\int_0^6 dx \int_0 ^{1-\frac{x}{6}}xydy=\frac{1}{2}\int_0^6x\cdot (1-\frac{x}{6})^2dx=

=1206(xx23+x336)dx=12(x22x39+x4144)06==\frac{1}{2}\int_0^6(x-\frac{x^2}{3}+\frac{x^3}{36})dx=\frac{1}{2}(\frac{x^2}{2}-\frac{x^3}{9}+\frac{x^4}{144})|_0^6=

=12(1824+9)=1.5    S=1.5=\frac{1}{2}(18-24+9)=1.5\implies S=1.5

Answer:S=1.5Answer:S=1.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS