The double integral is evaluated as,
∫14∫04(6x−3y)dxdy\int_{1}^{4}\int_{0}^{4}(6x-3y)dxdy∫14∫04(6x−3y)dxdy =∫14[6(x22)−3yx]04dy=\int_{1}^{4}[6(\frac{x^2}{2})-3yx]_{0}^{4}dy=∫14[6(2x2)−3yx]04dy
=∫14[3(42−02)−3y(4−0)]dy=\int_{1}^{4}[3(4^2-0^2)-3y(4-0)]dy=∫14[3(42−02)−3y(4−0)]dy
=∫14(48−12y)dy=\int_{1}^{4}(48-12y)dy=∫14(48−12y)dy
=[48y−12(y22)]14=[48y-12(\frac{y^2}{2})]_{1}^{4}=[48y−12(2y2)]14
=[48(4−1)−6(42−12)]=[48(4-1)-6(4^2-1^2)]=[48(4−1)−6(42−12)]
=[48(3)−6(16−1)]=[48(3)-6(16-1)]=[48(3)−6(16−1)]
=144−6(15)=144-6(15)=144−6(15)
=144−90=144-90=144−90
=54=54=54
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments