"\\int_0^3\\int_{y^2}^9y\\cos(x^2)dx\\,dy=\\int_{y^2}^9\\cos(x^2)\\int_0^3y\\,dy\\,dx\\\\\n=\\int_{y^2}^9\\cos(x^2)[y^2\/2]_0^3dx\\\\\n=\\frac{9}{2}\\int_{y^2}^9\\cos(x^2)dx" Substitute "u=\\dfrac{\\sqrt{2}x}{\\sqrt{{\\pi}}}\\implies \\mathrm{d}x=\\dfrac{\\sqrt{{\\pi}}}{\\sqrt{2}}\\,\\mathrm{d}u" ,thus
"\\int_0^3\\int_{y^2}^9y\\cos(x^2)dx\\,dy=\\frac{9}{2}\\dfrac{\\sqrt{{\\pi}}}{\\sqrt{2}}{\\displaystyle\\int_{\\tiny\\dfrac{\\sqrt{2}y^2}{\\sqrt{{\\pi}}}}^{\\tiny\\dfrac{9\\sqrt{2}}{\\sqrt{{\\pi}}}}}\\cos\\left(\\dfrac{{\\pi}u^2}{2}\\right)\\,\\mathrm{d}u\\\\\n\\implies\\frac{9}{2}\\dfrac{\\sqrt{{\\pi}}}{\\sqrt{2}}C(u)=\\dfrac{\\sqrt{{\\pi}}\\operatorname{C}\\left(\\frac{\\sqrt{2}x}{\\sqrt{{\\pi}}}\\right)}{\\sqrt{2}}\\bigg|_{y^2}^9" Because, as
"{\\displaystyle\\int}\\cos\\left(\\dfrac{{\\pi}u^2}{2}\\right)\\,\\mathrm{d}u=C(u)" This is a special integral (Fresnel integral):
"\\int_{y^2}^9 \\int_0^3 y \\cos(x^2) dy dx = 9\/2 \\sqrt(\\pi\/2) (C(9 \\sqrt(2\/\\pi)) - C(\\sqrt(2\/\\pi) y^2))"
Comments
Leave a comment