∫03∫y29ycos(x2)dxdy=∫y29cos(x2)∫03ydydx=∫y29cos(x2)[y2/2]03dx=29∫y29cos(x2)dx Substitute u=π2x⟹dx=2πdu ,thus
∫03∫y29ycos(x2)dxdy=292π∫π2y2π92cos(2πu2)du⟹292πC(u)=2πC(π2x)∣∣y29 Because, as
∫cos(2πu2)du=C(u) This is a special integral (Fresnel integral):
∫y29∫03ycos(x2)dydx=9/2(π/2)(C(9(2/π))−C((2/π)y2))
Comments