∫ 0 3 ∫ y 2 9 y cos ( x 2 ) d x d y = ∫ y 2 9 cos ( x 2 ) ∫ 0 3 y d y d x = ∫ y 2 9 cos ( x 2 ) [ y 2 / 2 ] 0 3 d x = 9 2 ∫ y 2 9 cos ( x 2 ) d x \int_0^3\int_{y^2}^9y\cos(x^2)dx\,dy=\int_{y^2}^9\cos(x^2)\int_0^3y\,dy\,dx\\
=\int_{y^2}^9\cos(x^2)[y^2/2]_0^3dx\\
=\frac{9}{2}\int_{y^2}^9\cos(x^2)dx ∫ 0 3 ∫ y 2 9 y cos ( x 2 ) d x d y = ∫ y 2 9 cos ( x 2 ) ∫ 0 3 y d y d x = ∫ y 2 9 cos ( x 2 ) [ y 2 /2 ] 0 3 d x = 2 9 ∫ y 2 9 cos ( x 2 ) d x Substitute u = 2 x π ⟹ d x = π 2 d u u=\dfrac{\sqrt{2}x}{\sqrt{{\pi}}}\implies \mathrm{d}x=\dfrac{\sqrt{{\pi}}}{\sqrt{2}}\,\mathrm{d}u u = π 2 x ⟹ d x = 2 π d u ,thus
∫ 0 3 ∫ y 2 9 y cos ( x 2 ) d x d y = 9 2 π 2 ∫ 2 y 2 π 9 2 π cos ( π u 2 2 ) d u ⟹ 9 2 π 2 C ( u ) = π C ( 2 x π ) 2 ∣ y 2 9 \int_0^3\int_{y^2}^9y\cos(x^2)dx\,dy=\frac{9}{2}\dfrac{\sqrt{{\pi}}}{\sqrt{2}}{\displaystyle\int_{\tiny\dfrac{\sqrt{2}y^2}{\sqrt{{\pi}}}}^{\tiny\dfrac{9\sqrt{2}}{\sqrt{{\pi}}}}}\cos\left(\dfrac{{\pi}u^2}{2}\right)\,\mathrm{d}u\\
\implies\frac{9}{2}\dfrac{\sqrt{{\pi}}}{\sqrt{2}}C(u)=\dfrac{\sqrt{{\pi}}\operatorname{C}\left(\frac{\sqrt{2}x}{\sqrt{{\pi}}}\right)}{\sqrt{2}}\bigg|_{y^2}^9 ∫ 0 3 ∫ y 2 9 y cos ( x 2 ) d x d y = 2 9 2 π ∫ π 2 y 2 π 9 2 cos ( 2 π u 2 ) d u ⟹ 2 9 2 π C ( u ) = 2 π C ( π 2 x ) ∣ ∣ y 2 9 Because, as
∫ cos ( π u 2 2 ) d u = C ( u ) {\displaystyle\int}\cos\left(\dfrac{{\pi}u^2}{2}\right)\,\mathrm{d}u=C(u) ∫ cos ( 2 π u 2 ) d u = C ( u ) This is a special integral (Fresnel integral ):
∫ y 2 9 ∫ 0 3 y cos ( x 2 ) d y d x = 9 / 2 ( π / 2 ) ( C ( 9 ( 2 / π ) ) − C ( ( 2 / π ) y 2 ) ) \int_{y^2}^9 \int_0^3 y \cos(x^2) dy dx = 9/2 \sqrt(\pi/2) (C(9 \sqrt(2/\pi)) - C(\sqrt(2/\pi) y^2)) ∫ y 2 9 ∫ 0 3 y cos ( x 2 ) d y d x = 9/2 ( π /2 ) ( C ( 9 ( 2/ π )) − C ( ( 2/ π ) y 2 ))
Comments