∬Dyx5+1dAD={0≤x≤1,0≤y≤x2}\iint\limits_{D} \frac{y}{x^5 + 1}dA \\ D = \{0\leq x\leq1, 0\leq y \leq x^2\}\\D∬x5+1ydAD={0≤x≤1,0≤y≤x2}
∬Dyx5+1dA=∫01dx∫0x2yx5+1dy=∫01dxx5+1∫0x2ydy==∫01dxx5+1(y22)∣0x2=∫01x4dx2(x5+1)==[x5+1=u1→25x4dx=du0→1]=52∫12duu==52ln(u)∣12=52(ln2−ln1)=52ln2\iint\limits_{D} \frac{y}{x^5 + 1}dA = \int\limits_{0}^{1}dx\int\limits_{0}^{x^2} \frac{y}{x^5 + 1}dy= \int\limits_{0}^{1}\frac{dx}{x^5+1}\int\limits_{0}^{x^2}ydy = \\ = \int\limits_{0}^{1}\frac{dx}{x^5+1} (\frac{y^2}{2})|_0^{x^2} = \int\limits_{0}^{1}\frac{x^4dx}{2(x^5+1)} = \\ =\left[ \begin{array}{ccc} x^5 +1 = u & 1\to 2\\ 5x^4 dx = du & 0 \to 1\\ \end{array} \right]= \frac{5}{2}\int\limits_{1}^2\frac{du}{u} = \\=\frac{5}{2} ln(u)|_1^2 =\frac{5}{2}(ln2 - ln1) = \frac{5}{2}ln2D∬x5+1ydA=0∫1dx0∫x2x5+1ydy=0∫1x5+1dx0∫x2ydy==0∫1x5+1dx(2y2)∣0x2=0∫12(x5+1)x4dx==[x5+1=u5x4dx=du1→20→1]=251∫2udu==25ln(u)∣12=25(ln2−ln1)=25ln2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments