Question #139316
Evaluate ∫ ∫D (y/(x5+1)) dA on the region D defined by 0≤x≤1; 0≤y≤x2.
1
Expert's answer
2020-10-26T19:00:38-0400

Dyx5+1dAD={0x1,0yx2}\iint\limits_{D} \frac{y}{x^5 + 1}dA \\ D = \{0\leq x\leq1, 0\leq y \leq x^2\}\\


Dyx5+1dA=01dx0x2yx5+1dy=01dxx5+10x2ydy==01dxx5+1(y22)0x2=01x4dx2(x5+1)==[x5+1=u125x4dx=du01]=5212duu==52ln(u)12=52(ln2ln1)=52ln2\iint\limits_{D} \frac{y}{x^5 + 1}dA = \int\limits_{0}^{1}dx\int\limits_{0}^{x^2} \frac{y}{x^5 + 1}dy= \int\limits_{0}^{1}\frac{dx}{x^5+1}\int\limits_{0}^{x^2}ydy = \\ = \int\limits_{0}^{1}\frac{dx}{x^5+1} (\frac{y^2}{2})|_0^{x^2} = \int\limits_{0}^{1}\frac{x^4dx}{2(x^5+1)} = \\ =\left[ \begin{array}{ccc} x^5 +1 = u & 1\to 2\\ 5x^4 dx = du & 0 \to 1\\ \end{array} \right]= \frac{5}{2}\int\limits_{1}^2\frac{du}{u} = \\=\frac{5}{2} ln(u)|_1^2 =\frac{5}{2}(ln2 - ln1) = \frac{5}{2}ln2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS