"\\iint\\limits_{D} \\frac{y}{x^5 + 1}dA \\\\ D = \\{0\\leq x\\leq1, 0\\leq y \\leq x^2\\}\\\\"
"\\iint\\limits_{D} \\frac{y}{x^5 + 1}dA = \\int\\limits_{0}^{1}dx\\int\\limits_{0}^{x^2} \\frac{y}{x^5 + 1}dy= \\int\\limits_{0}^{1}\\frac{dx}{x^5+1}\\int\\limits_{0}^{x^2}ydy = \\\\\n = \\int\\limits_{0}^{1}\\frac{dx}{x^5+1} (\\frac{y^2}{2})|_0^{x^2} = \\int\\limits_{0}^{1}\\frac{x^4dx}{2(x^5+1)} = \\\\\n=\\left[\n \\begin{array}{ccc}\n x^5 +1 = u & 1\\to 2\\\\\n 5x^4 dx = du & 0 \\to 1\\\\\n \\end{array}\n\\right]=\n\\frac{5}{2}\\int\\limits_{1}^2\\frac{du}{u} = \\\\=\\frac{5}{2} ln(u)|_1^2\n=\\frac{5}{2}(ln2 - ln1) = \\frac{5}{2}ln2"
Comments
Leave a comment