Absolute max and min f(x,y)=2x3+y4 on region x2+y2≤4
first order partial derivatives:
fx=6x2,fy=4y3
fx=0,fy=0⟹x=0,y=0
critical point (0,0) is inside the disk of radius 2
the function value of this critical point is f(0,0)=0
checking the boundaries:
x2+y2=4
y2=4−x2
−2≤x≤2
g(x)=2x3+(4−x2)2=2x3+16−8x2+x4=x4+2x3−8x2+16
g′(x)=4x3+6x2−16x⟹x=4−3±73 or 0
x1=0,x2≈−2.886,x3≈1.386
the value of g(x) at the critical points and the endpoints:
g(−2)=−16,g(2)=16,g(0)=16,g(−2.886)≈−29.33,g(1.386)≈9.65
x=−2:y2=4−x2=4−4=0⟹y=0
x=2:y2=4−x2⟹y=0
x=0:y2=4−0=4⟹y=±2
x=−2.886:y2=4−x2=−4.33⟹∄y
x=1.386:y2=4−x2=2.08⟹y=±1.44
The function values for g(x) correspond to the following function values for f(x,y):
g(−2)=−16⟹f(−2,0)=−16
g(2)=16⟹f(2,0)=16
g(0)=16⟹f(0,2)=16,f(0,−2)=16
g(1.386)=9.65⟹f(1.386,1.44)=9.65,f(1.386,−1.44)=9.65
Comparing these values we finally have the answer:
absolute minimum value is -16 and occurs at (-2,0)
absolute maximum value is 16 and occurs at (2,0), (0,2) and (0,-2)
Comments