Absolute max and min f ( x , y ) = 2 x 3 + y 4 f(x,y)=2x^3+y^4 f ( x , y ) = 2 x 3 + y 4 on region x 2 + y 2 ≤ 4 x^2+y^2\leq4 x 2 + y 2 ≤ 4
first order partial derivatives:
f x = 6 x 2 , f y = 4 y 3 f_x = 6x^2, f_y=4y^3 f x = 6 x 2 , f y = 4 y 3
f x = 0 , f y = 0 ⟹ x = 0 , y = 0 f_x=0, f_y=0\implies x=0, y=0 f x = 0 , f y = 0 ⟹ x = 0 , y = 0
critical point (0,0) is inside the disk of radius 2
the function value of this critical point is f ( 0 , 0 ) = 0 f(0,0)=0 f ( 0 , 0 ) = 0
checking the boundaries:
x 2 + y 2 = 4 x^2+y^2=4 x 2 + y 2 = 4
y 2 = 4 − x 2 y^2=4-x^2 y 2 = 4 − x 2
− 2 ≤ x ≤ 2 -2\leq x \leq 2 − 2 ≤ x ≤ 2
g ( x ) = 2 x 3 + ( 4 − x 2 ) 2 = 2 x 3 + 16 − 8 x 2 + x 4 = x 4 + 2 x 3 − 8 x 2 + 16 g(x)=2x^3+(4-x^2)^2=2x^3+16-8x^2+x^4=x^4+2x^3-8x^2+16 g ( x ) = 2 x 3 + ( 4 − x 2 ) 2 = 2 x 3 + 16 − 8 x 2 + x 4 = x 4 + 2 x 3 − 8 x 2 + 16
g ′ ( x ) = 4 x 3 + 6 x 2 − 16 x ⟹ x = − 3 ± 73 4 g'(x)=4x^3+6x^2-16x \implies x=\frac{-3\pm\sqrt{73}}{4} g ′ ( x ) = 4 x 3 + 6 x 2 − 16 x ⟹ x = 4 − 3 ± 73 or 0
x 1 = 0 , x 2 ≈ − 2.886 , x 3 ≈ 1.386 x_1=0,x_2\approx-2.886, x_3\approx1.386 x 1 = 0 , x 2 ≈ − 2.886 , x 3 ≈ 1.386
the value of g(x) at the critical points and the endpoints:
g ( − 2 ) = − 16 , g ( 2 ) = 16 , g ( 0 ) = 16 , g ( − 2.886 ) ≈ − 29.33 , g ( 1.386 ) ≈ 9.65 g(-2)=-16, g(2)=16, g(0)=16, g(-2.886)\approx-29.33, g(1.386)\approx9.65 g ( − 2 ) = − 16 , g ( 2 ) = 16 , g ( 0 ) = 16 , g ( − 2.886 ) ≈ − 29.33 , g ( 1.386 ) ≈ 9.65
x = − 2 : y 2 = 4 − x 2 = 4 − 4 = 0 ⟹ y = 0 x=-2: y^2=4-x^2=4-4=0 \implies y=0 x = − 2 : y 2 = 4 − x 2 = 4 − 4 = 0 ⟹ y = 0
x = 2 : y 2 = 4 − x 2 ⟹ y = 0 x=2: y^2=4-x^2 \implies y=0 x = 2 : y 2 = 4 − x 2 ⟹ y = 0
x = 0 : y 2 = 4 − 0 = 4 ⟹ y = ± 2 x=0: y^2=4-0=4 \implies y=\pm2 x = 0 : y 2 = 4 − 0 = 4 ⟹ y = ± 2
x = − 2.886 : y 2 = 4 − x 2 = − 4.33 ⟹ ∄ y x=-2.886: y^2=4-x^2=-4.33 \implies\nexists y x = − 2.886 : y 2 = 4 − x 2 = − 4.33 ⟹ ∄ y
x = 1.386 : y 2 = 4 − x 2 = 2.08 ⟹ y = ± 1.44 x=1.386: y^2=4-x^2=2.08 \implies y=\pm1.44 x = 1.386 : y 2 = 4 − x 2 = 2.08 ⟹ y = ± 1.44
The function values for g(x) correspond to the following function values for f(x,y):
g ( − 2 ) = − 16 ⟹ f ( − 2 , 0 ) = − 16 g(-2)=-16 \implies f(-2,0)=-16 g ( − 2 ) = − 16 ⟹ f ( − 2 , 0 ) = − 16
g ( 2 ) = 16 ⟹ f ( 2 , 0 ) = 16 g(2)=16 \implies f(2,0)=16 g ( 2 ) = 16 ⟹ f ( 2 , 0 ) = 16
g ( 0 ) = 16 ⟹ f ( 0 , 2 ) = 16 , f ( 0 , − 2 ) = 16 g(0)=16 \implies f(0,2)=16, f(0,-2)=16 g ( 0 ) = 16 ⟹ f ( 0 , 2 ) = 16 , f ( 0 , − 2 ) = 16
g ( 1.386 ) = 9.65 ⟹ f ( 1.386 , 1.44 ) = 9.65 , f ( 1.386 , − 1.44 ) = 9.65 g(1.386)=9.65 \implies f(1.386,1.44)=9.65, f(1.386,-1.44)=9.65 g ( 1.386 ) = 9.65 ⟹ f ( 1.386 , 1.44 ) = 9.65 , f ( 1.386 , − 1.44 ) = 9.65
Comparing these values we finally have the answer:
absolute minimum value is -16 and occurs at (-2,0)
absolute maximum value is 16 and occurs at (2,0), (0,2) and (0,-2)
Comments