Question #138351
Find the absolute maximum and absolute minimum of the function f(x,y)=2x^3+y^4 on the region {(x,y)|x^2+y^2≤4}.

If the absolute max or min occurs at multiple points list them all, separated by commas.

Absolute minimum value: ___

attained at ___.

Absolute maximum value: ___

attained at ___.
1
Expert's answer
2020-10-21T17:25:45-0400

Absolute max and min f(x,y)=2x3+y4f(x,y)=2x^3+y^4 on region x2+y24x^2+y^2\leq4


first order partial derivatives:

fx=6x2,fy=4y3f_x = 6x^2, f_y=4y^3

fx=0,fy=0    x=0,y=0f_x=0, f_y=0\implies x=0, y=0

critical point (0,0) is inside the disk of radius 2

the function value of this critical point is f(0,0)=0f(0,0)=0


checking the boundaries:

x2+y2=4x^2+y^2=4

y2=4x2y^2=4-x^2

2x2-2\leq x \leq 2

g(x)=2x3+(4x2)2=2x3+168x2+x4=x4+2x38x2+16g(x)=2x^3+(4-x^2)^2=2x^3+16-8x^2+x^4=x^4+2x^3-8x^2+16

g(x)=4x3+6x216x    x=3±734g'(x)=4x^3+6x^2-16x \implies x=\frac{-3\pm\sqrt{73}}{4} or 0

x1=0,x22.886,x31.386x_1=0,x_2\approx-2.886, x_3\approx1.386

the value of g(x) at the critical points and the endpoints:

g(2)=16,g(2)=16,g(0)=16,g(2.886)29.33,g(1.386)9.65g(-2)=-16, g(2)=16, g(0)=16, g(-2.886)\approx-29.33, g(1.386)\approx9.65

x=2:y2=4x2=44=0    y=0x=-2: y^2=4-x^2=4-4=0 \implies y=0

x=2:y2=4x2    y=0x=2: y^2=4-x^2 \implies y=0

x=0:y2=40=4    y=±2x=0: y^2=4-0=4 \implies y=\pm2

x=2.886:y2=4x2=4.33    yx=-2.886: y^2=4-x^2=-4.33 \implies\nexists y

x=1.386:y2=4x2=2.08    y=±1.44x=1.386: y^2=4-x^2=2.08 \implies y=\pm1.44


The function values for g(x) correspond to the following function values for f(x,y):

g(2)=16    f(2,0)=16g(-2)=-16 \implies f(-2,0)=-16

g(2)=16    f(2,0)=16g(2)=16 \implies f(2,0)=16

g(0)=16    f(0,2)=16,f(0,2)=16g(0)=16 \implies f(0,2)=16, f(0,-2)=16

g(1.386)=9.65    f(1.386,1.44)=9.65,f(1.386,1.44)=9.65g(1.386)=9.65 \implies f(1.386,1.44)=9.65, f(1.386,-1.44)=9.65


Comparing these values we finally have the answer:

absolute minimum value is -16 and occurs at (-2,0)

absolute maximum value is 16 and occurs at (2,0), (0,2) and (0,-2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS