Absolute max and min "f(x,y)=2x^3+y^4" on region "x^2+y^2\\leq4"
first order partial derivatives:
"f_x = 6x^2, f_y=4y^3"
"f_x=0, f_y=0\\implies x=0, y=0"
critical point (0,0) is inside the disk of radius 2
the function value of this critical point is "f(0,0)=0"
checking the boundaries:
"x^2+y^2=4"
"y^2=4-x^2"
"-2\\leq x \\leq 2"
"g(x)=2x^3+(4-x^2)^2=2x^3+16-8x^2+x^4=x^4+2x^3-8x^2+16"
"g'(x)=4x^3+6x^2-16x \\implies x=\\frac{-3\\pm\\sqrt{73}}{4}" or 0
"x_1=0,x_2\\approx-2.886, x_3\\approx1.386"
the value of g(x) at the critical points and the endpoints:
"g(-2)=-16, g(2)=16, g(0)=16, g(-2.886)\\approx-29.33, g(1.386)\\approx9.65"
"x=-2: y^2=4-x^2=4-4=0 \\implies y=0"
"x=2: y^2=4-x^2 \\implies y=0"
"x=0: y^2=4-0=4 \\implies y=\\pm2"
"x=-2.886: y^2=4-x^2=-4.33 \\implies\\nexists y"
"x=1.386: y^2=4-x^2=2.08 \\implies y=\\pm1.44"
The function values for g(x) correspond to the following function values for f(x,y):
"g(-2)=-16 \\implies f(-2,0)=-16"
"g(2)=16 \\implies f(2,0)=16"
"g(0)=16 \\implies f(0,2)=16, f(0,-2)=16"
"g(1.386)=9.65 \\implies f(1.386,1.44)=9.65, f(1.386,-1.44)=9.65"
Comparing these values we finally have the answer:
absolute minimum value is -16 and occurs at (-2,0)
absolute maximum value is 16 and occurs at (2,0), (0,2) and (0,-2)
Comments
Leave a comment