Evaluate (1 to 4)∫(1 to 2)∫(x/y + y/x) dydx.
"\\displaystyle\\begin{aligned} \\int_1^4\\int_1^2\\left(\\frac{x}{y} + \\frac{y}{x}\\right) \\mathrm{d}y\\,\\mathrm{d}x \\\\&= \\int_1^4\\left(x\\ln(y) + \\frac{y^2}{2x}\\right)\\biggr\\vert_1^2\\,\\mathrm{d}x\\\\ &= \\int_1^4\\left(x\\ln(2) + \\frac{2}{x} - \\frac{1}{2x}\\right)\\mathrm{d}x\\\\ &= \\int_1^4\\left(x\\ln(2) + \\frac{3}{2x}\\right)\\mathrm{d}x\\\\&= \\left(\\frac{x^2\\ln(2)}{2} + \\frac{3}{2}\\ln(x)\\right)\\biggr\\vert_1^4 \\\\&= 8\\ln(2) + \\frac{3\\ln(4)}{2} - \\frac{\\ln(2)}{2} \\\\&= 8\\ln(2) + 3\\ln(2) - \\frac{\\ln(2)}{2} = \\frac{21\\ln(2)}{2}\n\\end{aligned}"
Comments
Leave a comment