Evaluate (1 to 4)∫(1 to 2)∫(x/y + y/x) dydx.
∫14∫12(xy+yx)dy dx=∫14(xln(y)+y22x)∣12 dx=∫14(xln(2)+2x−12x)dx=∫14(xln(2)+32x)dx=(x2ln(2)2+32ln(x))∣14=8ln(2)+3ln(4)2−ln(2)2=8ln(2)+3ln(2)−ln(2)2=21ln(2)2\displaystyle\begin{aligned} \int_1^4\int_1^2\left(\frac{x}{y} + \frac{y}{x}\right) \mathrm{d}y\,\mathrm{d}x \\&= \int_1^4\left(x\ln(y) + \frac{y^2}{2x}\right)\biggr\vert_1^2\,\mathrm{d}x\\ &= \int_1^4\left(x\ln(2) + \frac{2}{x} - \frac{1}{2x}\right)\mathrm{d}x\\ &= \int_1^4\left(x\ln(2) + \frac{3}{2x}\right)\mathrm{d}x\\&= \left(\frac{x^2\ln(2)}{2} + \frac{3}{2}\ln(x)\right)\biggr\vert_1^4 \\&= 8\ln(2) + \frac{3\ln(4)}{2} - \frac{\ln(2)}{2} \\&= 8\ln(2) + 3\ln(2) - \frac{\ln(2)}{2} = \frac{21\ln(2)}{2} \end{aligned}∫14∫12(yx+xy)dydx=∫14(xln(y)+2xy2)∣∣12dx=∫14(xln(2)+x2−2x1)dx=∫14(xln(2)+2x3)dx=(2x2ln(2)+23ln(x))∣∣14=8ln(2)+23ln(4)−2ln(2)=8ln(2)+3ln(2)−2ln(2)=221ln(2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments