Answer to Question #139332 in Calculus for Promise Omiponle

Question #139332
Calculate the double integral ∫∫R(8x+6y+48)dA where R is the region: 0≤x≤3,0≤y≤4.
1
Expert's answer
2020-10-26T20:00:01-0400

"\\begin{aligned}\n\\iint_R (8x + 6y + 48)\\, \\mathrm{d}A&= \\int_0^4 \\int_0^3 (8x + 6y + 48)\\, \\mathrm{d}x\\, \\mathrm{d}y\\\\\n&=\\int_0^4 (4x^2 + 6xy + 48x)\\, \\vert_0^3 \\, \\mathrm{d}y\\\\\n&= \\int_0^4 (36 + 18y + 144)\\, \\mathrm{d}y \\\\\n&= \\int_0^4 (180 + 18y)\\, \\mathrm{d}y\n\\\\&= (180y + 9y^2)\\vert_0^4\n\\\\&= 720 + 144 = 864\n\\end{aligned}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS