2020-10-19T17:10:50-04:00
Sketch the region of integration, carefully with appropriate labels, and then perform the following integral: (0 to pi/4) ∫ (4secƟ to 0) ∫ r dr dƟ
1
2020-11-01T17:57:11-0500
∫ 0 π / 4 ∫ 4 sec ( θ ) 0 r d r d θ = ∫ 0 π / 4 [ r 2 / 2 ] 4 sec ( θ ) 0 d θ = ∫ 0 π / 4 − 8 sec 2 ( θ ) d θ = − 8 [ tan ( θ ) ] 0 π / 4 = − 8 \int_0^{\pi/4}\int_{4\sec(\theta)}^0r\,dr\,d\theta=\int_0^{\pi/4}\bigg[r^2/2\bigg]_{4\sec(\theta)}^0d\theta\\
=\int_0^{\pi/4}-8\sec^2(\theta)d\theta\\
=-8[\tan(\theta)]_0^{\pi/4}=-8 ∫ 0 π /4 ∫ 4 s e c ( θ ) 0 r d r d θ = ∫ 0 π /4 [ r 2 /2 ] 4 s e c ( θ ) 0 d θ = ∫ 0 π /4 − 8 sec 2 ( θ ) d θ = − 8 [ tan ( θ ) ] 0 π /4 = − 8
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments