Area of integration is a sector π 4 \frac{\pi}{4} 4 π of a circle with radius 2 \sqrt{2} 2 . For calculation in polar coordinates use formula
∬ D f ( x , y ) d x d y = ∬ G f ( r cos ϕ , r sin ϕ ) r d r d ϕ \iint_{D}f(x,y)dxdy=\iint_{G}f(r\cos{\phi},r\sin{\phi})rdrd\phi ∬ D f ( x , y ) d x d y = ∬ G f ( r cos ϕ , r sin ϕ ) r d r d ϕ
∫ 0 1 ∫ y 2 − y 2 ( x + y ) d x d y = \int_{0}^{1}\int_{y}^{\sqrt{2-y^2}}(x+y)dxdy= ∫ 0 1 ∫ y 2 − y 2 ( x + y ) d x d y = (in the first answer here was a little error)
= ∫ 0 2 ∫ 0 π 4 ( r cos ϕ + r sin ϕ ) r d ϕ d r = =\int_{0}^{\sqrt{2}}\int_{0}^{\frac{\pi}{4}}(r\cos{\phi}+r\sin{\phi})rd\phi dr= = ∫ 0 2 ∫ 0 4 π ( r cos ϕ + r sin ϕ ) r d ϕ d r =
= ∫ 0 2 ∫ 0 π 4 ( cos ϕ + sin ϕ ) d ϕ r 2 d r = =\int_{0}^{\sqrt{2}}\int_{0}^{\frac{\pi}{4}}(\cos{\phi}+\sin{\phi})d\phi r^2dr= = ∫ 0 2 ∫ 0 4 π ( cos ϕ + sin ϕ ) d ϕ r 2 d r =
= ∫ 0 2 ( sin ϕ − cos ϕ ) ∣ 0 π 4 r 2 d r = =\int_{0}^{\sqrt{2}}(\sin{\phi}-\cos{\phi})|_{0}^{\frac{\pi}{4}}r^2dr= = ∫ 0 2 ( sin ϕ − cos ϕ ) ∣ 0 4 π r 2 d r =
= ∫ 0 2 r 2 d r = 1 3 r 3 ∣ 0 2 = 2 2 3 =\int_{0}^{\sqrt{2}}r^2dr=\frac{1}{3}r^3|_{0}^{\sqrt{2}}=\frac{2\sqrt{2}}{3} = ∫ 0 2 r 2 d r = 3 1 r 3 ∣ 0 2 = 3 2 2
Comments