Area of integration is a sector "\\frac{\\pi}{4}" of a circle with radius "\\sqrt{2}" . For calculation in polar coordinates use formula
"\\iint_{D}f(x,y)dxdy=\\iint_{G}f(r\\cos{\\phi},r\\sin{\\phi})rdrd\\phi"
"\\int_{0}^{1}\\int_{y}^{\\sqrt{2-y^2}}(x+y)dxdy=" (in the first answer here was a little error)
"=\\int_{0}^{\\sqrt{2}}\\int_{0}^{\\frac{\\pi}{4}}(r\\cos{\\phi}+r\\sin{\\phi})rd\\phi dr="
"=\\int_{0}^{\\sqrt{2}}\\int_{0}^{\\frac{\\pi}{4}}(\\cos{\\phi}+\\sin{\\phi})d\\phi r^2dr="
"=\\int_{0}^{\\sqrt{2}}(\\sin{\\phi}-\\cos{\\phi})|_{0}^{\\frac{\\pi}{4}}r^2dr="
"=\\int_{0}^{\\sqrt{2}}r^2dr=\\frac{1}{3}r^3|_{0}^{\\sqrt{2}}=\\frac{2\\sqrt{2}}{3}"
Comments
Leave a comment