Question #139375
Using polar coordinates, evaluate the integral ∫∫Rsin(x^2+y^2)dA where R is the region 16≤x^2+y^2≤25.
1
Expert's answer
2020-11-01T16:02:51-0500

Rsin(x2+y2)dA,R:16x2+y225\iint_R \sin(x^2+y^2)dA, R: 16 \leq x^2+y^2 \leq25

x=rcosϕ,y=rsinϕx=r\cdot \cos \phi, y=r \cdot \sin \phi

x2+y2=r2cos2ϕ+r2sin2ϕ=r2(cos2ϕ+sin2ϕ)=r2    x^2+y^2=r^2\cos^2 \phi+r^2\sin^2 \phi=r^2 \cdot (cos^2\phi+sin^2\phi)=r^2\implies

    16r225    4r5\implies 16 \leq r^2\leq 25 \implies 4 \leq r \leq 5

R={(r,ϕ):4r5,0ϕ2π}R=\{(r,\phi): 4\leq r \leq 5, 0 \leq\phi\leq2\pi\}

Rsin(x2+y2)dA=4502πsinr2rdϕdr=\iint_R \sin(x^2+y^2)dA=\int_4^5\int_0^{2\pi}\sin r^2 \cdot rd\phi dr=

=45rsinr2dr02πdϕ=2π4512sinr2d(r2)==\int_4^5 r\sin r^2dr \int_0 ^{2\pi}d\phi=2\pi\int_4^5 \frac{1}{2}\sin r^2 d(r^2)=

=πcosr245=π(cos25cos16)=π(cos16cos25)=-\pi \cos r^2|_4^5 =-\pi(\cos 25-\cos 16)=\pi (\cos 16-\cos 25)

Rsin(x2+y2)dA=π(cos16cos25)\iint_R \sin(x^2+y^2)dA=\pi (\cos 16-\cos 25)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS