"Integral \\ of \\ {e^{-x^2}}"
Firstly, set the integral to be equal to I
"I = \\int{e^{-x^2}dx}"
Squaring both sides,
"I^2 = {(\\int{e^{-x^2}dx})}^2 =(\\int{e^{-x^2}dx})(\\int{e^{-x^2}dx})"
Since x is just a dummy variable, we can write,
"I^2=(\\int{e^{-x^2}dx})(\\int{e^{-y^2}dy})"
Combining, we have,
"I^2=\\int^{\\infin}_{-\\infin}(\\int^{\\infin}_{-\\infin}{e^{-(x^2+y^2)} \\ dx)dy}"
"I^2=\\int^{\\infin}_{-\\infin}\\int^{\\infin}_{-\\infin}{e^{-(x^2+y^2)} \\ dxdy}"
Converting from Cartesian Coordinates (x,y) to Polar Coordinates (r,θ)
"(r^2 =x^2 + y^2)"
"(""dxdy =dA = rdrd\\,\\theta)"
"\\therefore I^2 =\\iint{e^{-r^2} rdrd\\,\\theta}"
"I^2 =\\int^{2\\pi}_{0}(\\int^{\\infin}_{0}{e^{-r^2} r\\,dr)d\\,\\theta}"
"I^2 =\\int^{2\\pi}_{0}(\\int^{\\infin}_{0}{re^{-r^2} dr)d\\,\\theta}"
"I^2 =2\\pi(\\int^{\\infin}_{0}{re^{-r^2}dr})"
"I^2 =2\\pi\\int^{\\infin}_{0}{re^{-r^2} dr}"
Using u substitution,
"u = r^2"
"\\dfrac{du}{dr} = 2r"
"du = 2r\\,dr"
"\\therefore I^2 =2\\pi\\int^{\\infin}_{u =0}{re^{-u}dr}"
Multiplying both sides of the equation by 2,
"2I^2 =2\\pi\\int^{\\infin}_{u =0}{2re^{-u}dr}"
But du = 2rdr
"\\therefore 2I^2 =2\\pi\\int^{\\infin}_{u =0}{e^{-u}du}"
"2I^2 =2\\pi[e^{0}-e^{-\\infin}]"
"2I^2 =2\\pi(1-0)"
"2I^2 =2\\pi"
"I^2 =\\pi"
"I =\\sqrt\\pi"
"\\therefore \\ The \\ integral \\ of \\ e^{\u2212x^2} \\ is \\ \\sqrt{\\pi}"
Comments
Leave a comment