Question #139774
Evaluate the integral ∫▒(〖tan〗^4 x+〖tan〗^6 x)/(〖tan〗^4 x-1) dx
1
Expert's answer
2020-10-27T15:51:38-0400

tan4x+tan6xtan4x1dx=tan4xtan2x1dx=\int \frac{tan^4x+tan^6x}{tan^4x-1}dx=\int \frac{tan^4x}{tan^2x-1}dx=

(tan2x+1+1tan2x1)dx=(tan2x+1)dx+1tan2x1dx=\int( tan^2x+1+\frac{1}{tan^2x-1})dx=\int(tan^2x+1)dx+\int \frac{1}{tan^2x-1}dx=

=tanx+cos2xsin2xcos2xdx=tanx+1+cos2x2cos2xdx==tanx+\int\frac{cos^2x}{sin^2x-cos^2x}dx=tanx+\int \frac{\frac{1+cos2x}{2}}{-cos2x}dx=

=tanx+(12cos2x12)dx==tanx+\int(-\frac{1}{2cos2x}-\frac12)dx=

=tanx14logsec(2x)+tan(2x)x2+C=tanx-\frac14log|sec(2x)+tan(2x)|-\frac x2+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS