Answer to Question #139774 in Calculus for Moel Tariburu

Question #139774
Evaluate the integral ∫▒(〖tan〗^4 x+〖tan〗^6 x)/(〖tan〗^4 x-1) dx
1
Expert's answer
2020-10-27T15:51:38-0400

"\\int \\frac{tan^4x+tan^6x}{tan^4x-1}dx=\\int \\frac{tan^4x}{tan^2x-1}dx="

"\\int( tan^2x+1+\\frac{1}{tan^2x-1})dx=\\int(tan^2x+1)dx+\\int \\frac{1}{tan^2x-1}dx="

"=tanx+\\int\\frac{cos^2x}{sin^2x-cos^2x}dx=tanx+\\int \\frac{\\frac{1+cos2x}{2}}{-cos2x}dx="

"=tanx+\\int(-\\frac{1}{2cos2x}-\\frac12)dx="

"=tanx-\\frac14log|sec(2x)+tan(2x)|-\\frac x2+C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS