∫tan4x+tan6xtan4x−1dx=∫tan4xtan2x−1dx=\int \frac{tan^4x+tan^6x}{tan^4x-1}dx=\int \frac{tan^4x}{tan^2x-1}dx=∫tan4x−1tan4x+tan6xdx=∫tan2x−1tan4xdx=
∫(tan2x+1+1tan2x−1)dx=∫(tan2x+1)dx+∫1tan2x−1dx=\int( tan^2x+1+\frac{1}{tan^2x-1})dx=\int(tan^2x+1)dx+\int \frac{1}{tan^2x-1}dx=∫(tan2x+1+tan2x−11)dx=∫(tan2x+1)dx+∫tan2x−11dx=
=tanx+∫cos2xsin2x−cos2xdx=tanx+∫1+cos2x2−cos2xdx==tanx+\int\frac{cos^2x}{sin^2x-cos^2x}dx=tanx+\int \frac{\frac{1+cos2x}{2}}{-cos2x}dx==tanx+∫sin2x−cos2xcos2xdx=tanx+∫−cos2x21+cos2xdx=
=tanx+∫(−12cos2x−12)dx==tanx+\int(-\frac{1}{2cos2x}-\frac12)dx==tanx+∫(−2cos2x1−21)dx=
=tanx−14log∣sec(2x)+tan(2x)∣−x2+C=tanx-\frac14log|sec(2x)+tan(2x)|-\frac x2+C=tanx−41log∣sec(2x)+tan(2x)∣−2x+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments